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1 Integrating equations of motion with Runge-Kutta

a) Show that the usual RK2 algorithm is not symplectic, by calculating the jacobian for a
general Hamiltonian system and demonstrating that, in general, phase-space volume is not
conserved.

b) RK2 and RK4 are described on wikipedia and can be explained using increments. That
is to say, the second order version uses two points, k; and ks, and the fourth order one
uses ki, ko, k3, and k4. Derive another second-order RK2 algorithm than the usual one, by
choosing different partial steps and Taylor expanding x(h) = x(0) + bik; + boks + O(h3).

¢) When you use a time-step size that is much too large, for example when you simulate the
Argon fluid in the programming exercise, there will be a drift in the energy. Explain why,
on average, the energy will increase. Think about the kinetic energy.

d) Why is it not recommended to integrate Hamiltonian equations of motion with a Runge-
Kutta method? If you end up doing this anyway, for whatever reason (probably lazyness),
what should you do to make sure that your simulations produce valid results?

e) Describe the idea behind adaptive time-step algorithms and how Runge-Kutta algorithms
are particularly suitable for this.

For this second part of this question, you will need to know that the Morse potential is
Var(r) = D(1 — exp[—a(r — 10)])* , (1)

where D, a and 7y are the three parameters. The lennard-jones potential is

ot e[(2)" - (2)] »

f) Estimate the time scales of these potentials in terms of their parameters and use this to give
a rough upper bound for the time step that would be reasonable to use when simulating a
system with these potentials.

g) Under what circumstances would you need to use shorter time steps than the ones you have
just given? Describe how to test the validity of your choice of time step in a simulation.

2 Hard spheres and resource scaling

Usage of resources is always a balance between the three resources at your disposal: your own
time, the cpu time, and the memory. Consider the problem of the dynamics of a large num-
ber of hard particles on a line. Whenever two particles encounter one another, they collide
instantaneously and elastically.

a) Explain why you could not use a Runge-Kutta or Verlet algorithm for this system. Is it
practical to have a constant time step?

b) How many different particles can any particular particle collide with during the entire
simulation?

c¢) Sketch a simple algorithm for integrating the dynamics of this system. Estimate how the
memory and cpu loads will scale with the number of particles.



Now consider the problem of hard disk or spheres in 2 or 3 dimensions. This complicates the
simulation, because the particles can now move around eachother.

c)

How many different particles can any particular particle now collide with? What does this
mean for your algorithm? Describe an algorithm that would work in 2 or 3 dimensions and
show how the cpu and memory usage scale with the number of particles.

If your algorithm was O(NN?) per time step in cpu usage or even slower, find an algorithm
that is O(N). If you already had an O(N) algorithm, then describe one that is slower but
uses less memory.

How much memory is generally available? How many cpu clock cycles? What do you think
is the optimal algorithm to use? The fast one with the bigger memory footprint or the
slower one with the small footprint?

Discuss how to speed this kind of simulation up further, at the cost of more memory and
more programming and debugging time.

3 Drawing a variable from a non-uniform distribution

Random number generators usually produce homogeneously distributed random numbers. Often
this is not really the distribution you want. Suppose you have at your disposal a random number
generator which produces random numbers x distributed uniformly between 0 and 1.
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Using a method similar to the one described in the lecture for Gaussian random numbers,
devise a way to obtain a random number y distributed between 0 and oo according to the
density

ply) = %eXp (—%) : (3)

where [ is some positive constant. Prove that your scheme gives the correct distribution. For
the Monte-Carlo simulation of the random Lorentz gas, which we have used as an example
in the lecture, you would need this distribution for the free-flight times (see exercise 1.1).

The other distribution in the Lorentz-gas exercise was

p(¢):%cos¢,withfg<¢<g. (4)

There are other ways to get nonuniform distributions, for instance by first drawing from a
uniform distribution, and then rejecting the outcome with some probability that depends
on the value of the random number. Find such a way to draw from the distribution in

Eq. (4).

Lyapunov instability, chaos, and equilibration

Because the equations of motion of physical systems are often much too complicated, we are going
to play with Lyapunov instability in a very simple mathematical toy system. The coordinate x
is one-dimensional and restricted to the interval [0,1). The dynamics are discrete and described
as a function of the descrete time ¢ by

z(t+1)=2z(t) modl. (5)



2)
b)
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Sketch z(t + 1) as a function of x(¢).

Consider some initial condition 2(0) and another very nearby (infinitessimally different)
initial condition #(0) = x(0) + dz(0). Assume first that both z(0),#(0) < 3. Calculate
the difference after one iteration, dz(1) = Z(1) — x(1). What would have happened if

z(0),%(0) > 37

The largest Lyapunov exponent is the exponential rate at which infinitessimally close initial
conditions separate, i.e.
1o [ox(t)]

A= lim -1 .
=t [0x(0)]

(6)

What is the Lyapunov exponent of this system?

Now consider an ensemble of randomly chosen initial conditions. Do you think these will
eventually spread out over the entire interval? Do you think the system will reach some
kind of equilibrium?

Show that the uniform distribution of initial conditions over the [0,1) will produce the
same distribution in the next time step. This is the ergodic measure of the system.

Heat capacity (Frenkel and Smit)

(Based on question 8 on page 58 of Frenkel & Smit.)

a)
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Prove that the heat capacity can be calculated from fluctuations in the total energy in the
canonical ensemble through,

(U?) - (U)?

Cv = kpT?

(7)

In a Monte-Carlo simulation, you do not store the total energy, only the potential energy,
not the kinetic energy. Show that it is still possible to calculate the heat capacity from
energy fluctuations.

Heat capacity can also be calculated by differentiating the total energy with respect to
temperature. Discuss the pros and cons of this approach over the above expressions.

Importance sampling in the Ising model

Consider, for example, the three-dimensional Ising model. How many possible states does
the system have if it has N x N x N sites? Make some simple guesses about computer
speeds and the number of operations needed to calculate the terms in the sum. Give
an estimate of the order of magnitude of time it would take to numerically calculate the
partition function for N = 5 with today’s computers.

N = 5 is nowhere near the thermodynamic limit. Obviously, for large systems, it is not a
good idea to consider every state. We can get around this problem by using methods which
estimate thermodynamic properties by sampling a small subset of all configurations. Suppose
we attempt to estimate the partition function by randomly sampling B states, and calculating



their contribution. Let a; through «y be the results of the sampling. Consider the estimator for
a quantity X

Xestimate = %Zszl X (o) exp[—BE ()] ®)
ST LY E expl-BE(ar)]

where E(a) and X («) are the energy and relevant quantity respectively.

b) Argue that, when B goes to infinity, the expectation value of Xegstimate goes to the thermal
average of X.

¢) Recall what happens to the Ising model at low temperatures. What happens to the terms
in the sums in equation (8)? How many states (compared to the total number) would you
have to sample to get the results to converge to something sensible when the temperature
approaches 07

The reason for the difficulties with the estimator in equation (8) is that all states are equally
likely to be sampled, even though some hardly contribute to the partition function. The variance
of the terms in the sum is large. Suppose instead that we sample from the range of possible states
with some probability p(«) that depends on the state a.

d) Write down an estimator for the quantity X, making sure that the expectation value of
the estimate is equal to the thermodynamic average. The estimator should be of the form

1 B
Xestimate = B Zf . (9)

k=1

e) The right choice of p(a) can greatly improve the convergence of the sum. So far in this
problem, p(«) has been constant. By calculating the variance of £(«), show that p(a) o
exp[—BE(ax)] is an efficient choice of probability density that works well for physical
quantities.

7 Applying thermostats sensibly

When you perform MD simulations in the canonical ensemble, or where for some other reason
temperature must be controlled with a thermostat, it is important to consider what sort of
dynamics would be realistic.

a) Suppose you would like to know if you can turn your Argon simulation into a crystalline
solid. To achieve this, you would have to cool it down very slowly, changing the temperature
of the system slowly. This means you would have to apply a thermostat. Would you use the
Nosé-Hoover thermostat or a stochastic thermostat like the Langevin thermostat? Why?

b) Consider another simulation of a non-equilibrium system. The setup would be similar to
the figure below (taken from my own work). Two parallel rigid surfaces (blue) are made
of regularly placed atoms. There are other particles (red) embedded between the two
surfaces, keeping them seperated. These could be single atoms, or larger molecules (like
in the figure). The interactions between the red particles and atoms in the blue surfaces
is governed by some sort of effective interaction, for example Lennard-Jones. The surfaces
are kept parallel and orthogonal to the z-axis. One is kept completely fixed. The other



surface is forced to slide with respect to the first. This will inject energy into the system.
Without any additional measures, the system would heat up. How would a real system
cool down? In the simulation a thermostat is necessary to model this. How would you
thermostat this system and why?

c¢) Consider the same system as in b), but now with several layers of particles between the
two surfaces. Suppose the particles cannot move from one layer to the other. How would
you thermostat this system and why?

8 Monte-Carlo trial moves

(Based on question 12 on pages 135 and 136 of Frenkel & Smit.)

a) If one uses a small displacement for displacement trial moves, the fraction of accepted
moves goes up. Why is this not efficient?

b) In a simulaiton of a molecule that consists of more than one interaction site, a trial move
that rotates the molecule around its center of mass is usually included. Why?

¢) Which type of trial move (displacement, insertion/deletion, change of volume) is the most
expensive computationally? Why?



