
Exercises: Simulation Methods in Statistical Physics

Astrid S. de Wijn

March 19, 2013

1

1 Exercises lectures 1–5 (due 18 Feb)

1.1 Lyapunov exponents of the Lorentz gas

Consider the two-dimensional random Lorentz gas. This is a set of randomly placed, hard, circular
scatterers with a single point particle bouncing around between them. When the point particle
bounces elastically off the scatterer, its velocity is reflected.

a) How many degrees of freedom does this system have? How many dimensions does the phase
space have?

b) In this exercise, the aim is to calculate all the Lyapunov exponents of the system. These are
the possible rates at which infinitessimal perturbations in phase space can blow up or shrink
after long time. There are as many Lyapunov exponents as the phase space has dimensions.
Show that for any Hamiltonian system, including this one, the sum of all Lyapunov exponents
is 0.

c) Show that there are two Lyapunov exponents in the two-dimensional Lorentz gas that are
0. The easiest way to do this is to come up with two examples of perturbations that will
not grow or shrink exponentially. Use the result from b) to obtain a relation between the
largest and smallest Lyapunov exponents.

The largest positive Lyapunov exponent can be calculated by considering the growth of an arbitrary
infinitessimal pertubation that is not one of the two perturbations you have found in c). After
long time, the growth of this perturbation will be dominated by the largest Lyapunov exponent.
Consider two nearby paths with the same absolute velocity, but slightly different direction. The
difference between the two trajectories can be described by the relative difference in angle δθ. The
largest Lyapunov exponent can then be written as

λ+ = lim
t→∞

1

t
log(δθ(t)/δθ(0)) . (1)

One could obtain the Lyapunov exponents numerically by simulating a trajectory and calculating
this expresssion. At low densities, however, it is not necessary to resort to numerics.

d) During a free flight between collisions, the relative angle of the velocities does not change.
Consider the growth of the difference in position between the two trajectories during a free
flight, and calculates how this affects the collision normal for the next collision. Show that
the difference in angles after a collision, δθ′, can be written as

δθ′ = (1 + 2l/(a cosφ)) δθ , (2)

where φ is the angle between the velocity and the collision normal, a is the radius of a
scatterer, and l is the length of the free flight. Low density, i.e. ρa2 � 1, means that for the
mean free path l, l/a� 1. Thus, in the term between parentheses, the 1 can be neglected.

e) Explain that this Lyapunov exponent can be calculated as

λ+ = ν〈log(2l/(a cosφ)〉 , (3)

with ν the average collision frequency and 〈〉 the averaging over the distribution of l and φ.

f) In a Monte-Carlo simulation of this system, you would also need to know these distributions.
You would have to draw collision parameters for the next collision with a scatterer from these
distributions. Show that the probability densities are given by

P (l) =
1

l mf
exp(−l/lmf) , (4)

P (φ) =
1

2
cos(φ),with− π

2
< φ <

π

2
. (5)

2

Here, lmf is the mean free path between two successive collisions. Show also that lmf =
1/(2ρa) and ν = v/lmf = 2ρva.

g) To get the final result, you will have to integrate over these distributions. If you were doing
a Monte-Carlo simulation using the above distributions, instead of an analytical calculation,
you would have essentially used a Monte-Carlo method to calculate that integral. Monte-
Carlo methods are often used to numerically calculate integrals. Do this particular integral
manually and prove that

λ+ = 2ρav
(
ln(1/ρa2) + 1− ln 2− C

)
. (6)

Here C is Euler’s constant, C = 0.577215...

1.2 Integrating equations of motion

The details of the Runge-Kutta algorithms and midpoint rule can be found in Thijssen’s appendix,
page 570.

a) Show that the RK2 algorithm is not symplectic, by calculating the jacobian for a general
Hamiltonian system and demonstrating that, in general, phase-space volume is not con-
served.

b) RK2 and RK4 are shown in the book and explained using midpoints. That is to say, the
second order version uses two mid points, k1 and k2, and the fourth order one uses k1, k2, k3,
and k4. Choose some k1, k2, k3 that you find convenient. Derive a third-order RK3 algorithm,
by Taylor expanding and finding the constants c1, c2, and c3 such that x(h) = x(0) + c1k1 +
c2k2 + c3k3 +O(h4).

c) When you use a time-step size that is much too large, for example when you simulate the
Argon fluid in the programming exercise, there will be a drift in the energy. Explain why,
on average, the energy will increase.

d) Why is it not recommended to integrate Hamiltonian equations of motion with a Runge-
Kutta method? If you end up doing this anyway, for whatever reason (probably lazyness),
what should you do to make sure that your simulations produce valid results?

1.3 Hangman: an exercise in entropy and resource scaling

Entropy is a central concept in statistical physics. It is not only useful when dealing with large
numbers of particles, but also in other areas dealing with large numbers of something or other.
This hangman exercise is an example of that.

Hangman (swedish hänga gubben) is a game where you must guess a word of specific length by
guessing letters in it. If you guess too many wrong letters, you are hanged and “die”. If you guess
a correct letter, the game will reply by telling you where in the word it is. An example transcript
of a game:

________.

guess e

______e_.

guess n

______e_ (n).

guess s

______e_ (ns).

guess r

______er (ns).

guess i

3

______er (nsi).

guess o

_o____er (nsi).

guess a

_o____er (nsia).

guess m

_om___er (nsia).

guess computer

The word was: computer.

Suppose you are playing a computerised version of hangman. The hangman selects a random
word of length w from a dictionary that contains N words in total. You want to create your own
hangman player, which has access to the same dictionary, and has to come up with the best letter
to guess at every step. This may not be a physics problem exactly, but, because the dictionary is
large, it is a computational and statistical problem, and the same things that we consider in this
course play a role.

a) Every word (or state) is equally likely to be selected by the hangman computer. Define an
entropy S in the same sense as in statistical mechanics, based on the number of possible
words n at any particular stage in the game.

b) Entropy is all about information. What does the entropy you have defined in a) tell you
about the information that you have about the word?

c) Start simple with w = 3 where you have not made any guesses yet. Write down an expression
for the expectation value of the change in the entropy 〈∆S〉 when your first guess is “a”.
You can use the notation of W (s) to denote the number of words that fit a particular value
s of the observable. In this case s can take the string values a , a ,. . . aaa, (a). The latter
denotes the state of the observable when there has turned out to be no “a” in the word.
Denote the set of all states of the observable for the next step after that contain an “a”
by A(,a).

d) At every step, you obviously want to guess a letter that will give you a lot of information,
thus minimising the entropy, while making as few mistakes as possible. Write down an
expression for the average entropy change per mistake, 〈∆S〉/〈m〉. Use A(s,b) to describe
the set of all possible replies starting from the state of the observable s with, for example, a
“b” guessed correctly.

e) Before you could implement this idea, you would also need to know if this is computationally
doable. What order of magnitude are the parameters that will play a role in the cpu and
memory resource scaling: word length w, dictionary size N , and alphabet length a?

f) How would you implement this? Describe an algorithm explicitely. Try to minimise the
number of times you have to search through the dictionary. Make a few simple assumptions
about languages that seem reasonable and estimate roughly how the evaluation of the pa-
rameter that is to be optimised scales with N , w, and a. As this depends on how you choose
to implement the expression found in e), it may not be the same for everyone.

g) Do you think this computation will be doable?

For your information, the algorithm I have in mind was able to correctly guess 46% of words from
a dutch dictionary without any mistakes, and 97% with 5 or fewer mistakes. See the plot below.

4

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

%
 o

f
w

o
rd

s

wrong guesses needed

5

2 Exercises lectures 6–8 (due 25 Feb)

2.1 Langevin dynamics for thermostatting

Find the Fokker-Planck equation somewhere in the literature (even Wikipedia will do). For a
particle subjected to langevin dynamics, the probability density is governed by the FP equation.

a) Write down the langevin equation for a point particle in a potential well in one dimension.

b) From the langevin equation, argue why the 2 × 2 diffusion tensor in the FP equation for
this particle has only one nonzero element. Argue that this element does not depend on the
position or velocity.

c) Show that for a one-dimensional particle in a potential well, langevin dynamics produce a
probability density equal to the canonical probability distribution. Langevin dynamics thus
produce a suitable thermostat.

2.2 Frenkel and Smit exercises

Answer questions 8 and 9 on pages 58 and 59.

2.3 Drawing a variable from a non-uniform distribution

Random number generators usually produce homogeneously distributed random numbers. Often
this is not really the distribution you want. Suppose you have at your disposal a random number
generator which produces random numbers x distributed uniformly between 0 and 1.

a) Using a method similar to the one described in the lecture for Gaussian random numbers,
devise a way to obtain a random number y distributed between 0 and ∞ according to the
density

ρ(y) =
1

l
exp

(
−y
l

)
, (7)

where l is some positive constant. Prove that your scheme gives the correct distribution. For
the Monte-Carlo simulation of the random Lorentz gas, which we have used as an example
in the lecture, you would need this distribution for the free-flight times (see exercise 1.1).

b) The other distribution in the Lorentz-gas exercise was

ρ(φ) =
1

2
cosφ,with− π

2
< φ <

π

2
. (8)

There are other ways to get nonuniform distributions, for instance by first drawing from a
uniform distribution, and then rejecting the outcome with some probability that depends on
the value of the random number. Find such a way to draw from the distribution in Eq. (8).

6

3 Exercises lectures 9–10 (due March 6th)

3.1 Applying thermostats sensibly

When you perform MD simulations in the canonical ensemble, or where for some other reason tem-
perature must be controlled with a thermostat, it is important to consider what sort of dynamics
would be realistic.

a) Suppose you would like to know if you can turn your Argon simulation into a crystalline
solid. To achieve this, you would have to cool it down very slowly, changing the temperature
of the system slowly. This means you would have to apply a thermostat. Would you use the
Nosé-Hoover thermostat or a stochastic thermostat like the Langevin thermostat? Why?

b) Consider another simulation of a non-equilibrium system. The setup would be similar to
the figure below (taken from my own work). Two parallel rigid surfaces (blue) are made of
regularly placed atoms. There are other particles (red) embedded between the two surfaces,
keeping them seperated. These could be single atoms, or larger molecules (like in the figure).
The interactions between the red particles and atoms in the blue surfaces is governed by some
sort of effective interaction, for example Lennard-Jones. The surfaces are kept parallel and
orthogonal to the z-axis. One is kept completely fixed. The other surface is forced to slide
with respect to the first. This will inject energy into the system. Without any additional
measures, the system would heat up. How would a real system cool down? In the simulation
a thermostat is necessary to model this. How would you thermostat this system and why?

c) Consider the same system as in b), but now with several layers of particles between the two
surfaces. Suppose the particles cannot move from one layer to the other. How would you
thermostat this system and why?

3.2 Importance sampling in the Ising model

a) Consider, for example, the three-dimensional Ising model. How many possible states does
the system have if it has N×N×N sites? Make some simple guesses about computer speeds
and the number of operations needed to calculate the terms in the sum. Give an estimate of
the order of magnitude of time it would take to numerically calculate the partition function
for N = 5 with today’s computers.

N = 5 is nowhere near the thermodynamic limit. Obviously, for large systems, it is not a good
idea to consider every state. We can get around this problem by using me thods which estimate
thermodynamic properties by sampling a small subset of all configurations. Suppose we attempt to
estimate the partition function by randomly sampling B states, and calculating their contributio
n. Let α1 through αk be the results of the sampling. Consider the estimator for a quantity X

Xestimate =
1
B

∑B
k=1X(αk) exp[−βE(αk)]

1
B

∑B
k=1 exp[−βE(αk)]

, (9)

where E(α) and X(α) are the energy and relevant quantity respectively.

b) Argue that, if B � 1, the expectation value of Xestimate is equal to the thermal average of
X.

7

c) Recall what happens to the Ising model at low temperatures. What happens to the terms
in the sums in equation (9)? How many states (compared to the total number) would you
have to sample to get the results to converge to something sens ible when the temperature
approaches 0?

The reason for the difficulties with the estimator in equation (9) is that all states are equally likely
to be sampled, even though some hardly contribute to the partition function. The variance of the
terms in the sum is large. Suppose instead that we sample from the range of possible states with
some probability ρ(α) that depends on the state α.

d) Write down an estimator for the quantity X, making sure that the expectation value of the
estimate is equal to the thermodynamic average. The estimator should be of the form

Xestimate =
1

B

B∑
k=1

ξ(αk) . (10)

e) The right choice of ρ(α) can greatly improve the convergence of the sum. So far in this
problem, ρ(α) has been constant. By calculating the variance of ξ(α), show that ρ(α) ∝
exp[−βE(αk)] is an efficient choice of probability density that works well for physical quan-
tities.

3.3 Metropolis

While we know we wish to sample the distribution according to the Boltzmann factor, we do
not know the normalisation constant. In Markov-chain Monte-Carlo methods, rather than just
selecting a random configuration, a new configuration is generated from an old one in a random
way, thus producing a string of pseudo-random states.

Let the associated transition probability from configuration α to configuration α′ be denoted by
P (α→ α′). If the transition probabilities are chosen appropriately, then the states are distributed
according to the correct ensemble distribution. Two conditions need to be satisfied for this to be
the case, accessibility and detailed balance.

a) Write down the condition for detailed balance and substitute the equilibrium distribution.

b) Use induction to show that if the accessibility and above detailed balance conditions are
satisfied, the distribution of elements of a long Markov chain approaches the correct distri-
bution.

The Metropolis algorithm is a commonly used implementation that achieves this. The first step
is to randomly generate a new state from the old one (trial move). In the Ising model for instance
this could be by flipping a random spin. The state is then accepted with some probability. The
transition probability from the old state to the new one in the Metropolis algorithm is:

P (α→ α′) =

{
if E(α′) < E(α)

exp[−β(E(α)− E(α′)] if E(α′) > E(α)
. (11)

In a practical implementation one would generate a random number between 0 and 1, and accept
the new state if the random number is less than the transition probability.

c) Show that this algorithm satisfies the detailed balance condition you have obtained in a),
and that in the above described scheme for the Ising model, it satisfies the accessibility
assumption as well.

8

4 Exercises lectures 11-14 (due March 20th)

4.1 Trial moves and ensembles in MC

Solve questions 12 and 13 on pages 135 and 136 of Frenkel and Smit.

4.2 Variational QMC

a) Derive equation (12.13) on page 378 of Thijssen.

b) Do exercise 12.5 a, b, and e on page 420 of Thijssen.

4.3 Path integral QMC

Do exercise 12.2 on pages 418 and 419 of Thijssen.

9

