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The burgeoning development of nanotechnology is allowing us to construct more and more nano-
scale systems in the real world that used to only exist in computer simulations. Among them,
nanofibres made of only a few aligned polymeric chains in particular might soon cover important
roles in nanofabrications as well as in nanomedicine. In this work, we present a broad exploration
by computer simulations of elastic and inelastic properties of polyethylene-oxide (PEO) nanofibres
under load. We cover the full range from unloaded fibres up to their breaking point, focusing on all
features that arise from chain-chain interactions and collective behaviour of the chains. We employ
both molecular dynamics (MD) simulations and density functional theory (DF). The classical force
field is represented by a minimal reactive force field model, allowing for the breaking of covalent bonds.
Density functional (DF) computations provide a benchmark to gauge and validate the empirical force
field approach, and offer an intriguing view of the bundle chemical evolution after breaking. Force-
field based MD is employed for the systematic investigation of bundles of up to 24 chains, and for
a single bundle of 100 chains. Low-temperature results for bundles under moderate loading provide
a size-dependent sequence of cross-sections, structures, cohesive energies and elastic properties. A
remarkably high Youngs modulus on the order of 100 GPa was estimated with DF and MD, explained
by the semi-crystalline state of the fibres giving mechanical properties comparable to those of carbon
nanotubes and of graphene. Breaking is investigated by simulations with constant strain rate or
constant stress. The bundle breaks whenever the potential energy is raised above its metastability
range, but also below that limit due to creep activated by thermal fluctuations. A Kramers-type
approximation for the rate of chain breaking is proposed and compared to simulation data.

1 Introduction
Polymers underlie a vast variety of industrial applications1. They
also represent an essential ingredient of life, since proteins, nu-
cleic acids and polysaccharides consist of polymeric molecules.2

The mechanical properties of polymers play an important role
in their function, in both the man-made and natural context.3

Experimental developments in nanotechnology and biophysics as
well as the overwhelming growth of computer power are mak-
ing it feasible to investigate the mechanical properties of polymer
fibres down to the molecular and atomistic scale.

Experimental measurements at the nano scale have been fo-
cused very heavily on the single molecule limit, using vibrational
spectroscopy, atomic force microscopy and optical tweezers to
determine the strain-stress relation in organic polymers and in
biopolymers.4,5 Measurements provide elastic properties and lim-
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iting resistance that can be compared with state of the art ab-initio
computations,6 but also highlight the difference with the same
properties measured for macroscopic samples of the same mate-
rial. In between the single molecule and the bulk are different
structures and length scales that play a big role in this differ-
ence. This range of multiple chains together evokes the image
of rope or yarn, which is often plied, consisting of macroscopic fi-
bres twisted together to increase the strength and integrity of the
final material. Similarly, the interaction and collective behaviour
of the molecules inside polymer bundles play a crucial role in the
mechanical properties of the nanometric bundle.

While these intermediate length scales have not been studied
nearly as much as the single-molecule case, they are becoming ex-
perimentally accessible as well. Advanced fabrication techniques
such as electrospinning allow the routine preparation of fibres of
sub-µm length and diameter, reaching down to the 10 nm range.7

This size still corresponds to hundreds of polymer chains, leaving
out a relatively wide range that is currently accessible only to
self-assembly, that, however, is available only for selected, mainly
biological, polymers.

1–18 | 1



From a theoretical point of view, bundles in this size range are
complex and therefore challenging. Important roles are played
by chain-chain interactions, surface effects, entropy, nonlineari-
ties, and thermal fluctuations. At the same time, the systems are
so large as to be computationally expensive, yet too far from the
thermodynamic limit to allow for standard approaches from sta-
tistical physics and thermodynamics. This regime of nano-scale
bundles of small numbers of molecules (as opposed to single
molecules8 or bulk9,10) has not been investigated much theoret-
ically.

In our computational study, we consider nanofibres of a simple
paradigmatic polymer, i.e., polyethylene oxide (PEO), made of
nanometric bundles, stretched between two rigid, planar clamps.
PEO (also referred to as polyelthelene glycol or PEG) has a wide
range of applications11, and typing "polyethylene glycol" in an
internet search engine in October 2019 produces about six mil-
lion hits. It has been studied extensively experimentally5,12. In
our simulations, we focus on the elastic and inelastic response of
these nanofibres to tensile load, covering the creep regime and up
to their limiting resistance and chemistry of breaking.

Basic bonding and elastic properties of very thin samples are
analysed by density-functional (DF) simulations. This approach
provides quantitative and predictive information on the inter-
play of different deformation modes such as torsion, bending and
stretching along the chain, on the role of electron orbitals and co-
valent bonds in determining the chain breaking mechanism, de-
formation under stretching, and the re-bonding of chains after
breaking.

We study somewhat larger bundles using a reactive classical
force field, stretching them until they break. The stretched bun-
dles exhibit a complex structure in the lateral direction, show-
ing solid-like structures. In addition, we show that there are
more complex structural effects in 3D, related to the helicity of
the chains. The mechanical properties depend nontrivially on
the number of chains in the bundle. Finally, we also investigate
the thermal effects on the structure and breaking of bundles. We
show, among other things, that imperfections in the structure im-
pact on the mechanical properties.

The combination of chemical detail and accuracy provided by
DF with the computational efficiency, and rigorous statistical me-
chanics framework provided by MD simulation offers a compre-
hensive view of a complex phenomenon such as creep in poly-
mers.13 14

2 Method
We perform molecular dynamics (MD) simulations of stretch-
ing of a nanofibre of poly-ethylene oxide (PEO) composed of
N molecular chains on the form CH3−[O−CH2−CH2]n−O−CH3
with n = 33.

In our study, a tensile load or strain is applied to the PEO fi-
bre through planar clamps. These clamps consist of a geometrical
constraint on one of the coordinates, here z, of the terminations.
The position of the carbon atoms belonging to the two terminal
methyl groups are constrained to lay in the plane defining the
clamps. The junction of chain and clamp can move along the
plane of the clamp, hence tension combines with inter-chain co-

Fig. 1 A snapshot of a bundle with three chains.

hesion to mimic lateral compression of the fibre. The simulations
are carried out using the free and open-source LAMMPS Molec-
ular Dynamics Simulator.15 A sketch of this model is shown in
Fig. 1.

2.1 Classical simulations

The polymeric PEO chains are described with a united atom
model where each carbon is grouped with its bonded hydro-
gen atoms to form a united atom. It has been shown that this
united-atom representation provides results in reasonable agree-
ment with available experimental data at lower computational
cost.16 The basic force field we use has a functional form that
resembles the OPLS model,17 with some important distinctions.
The potential energy surface is dividend into bonded and non-
bonded parts,

U({Ri, i= 1,N}) =Ubond({Ri, i= 1,N})+Unon-bond({Ri, i= 1,N}) ,
(1)

where Ri is the position of the i-th atom. The non-bonded part
accounts for Coulomb interaction, short range repulsion, and dis-
persion interactions. The latter two are described by a Lennard-
Jones pair potential, so that

Unon-bond({Ri, i = 1,N}) =UC({Ri})+ULJ({Ri}) , (2)

where
UC({Ri}) = ke∑

i̸= j

′ qiq j

|Ri −Rj|
(3)

and

ULJ({Ri}) = 4∑
i ̸= j

′εi j

[(
σi j

|Ri −Rj|

)12
−
(

σi j

|Ri −Rj|

)6
]
, (4)

where ke is the Coulomb constant, {qi} are atomic charges, σi j

and εi j are the length and energy scales of the LJ potential. The
prime on each sum indicates that pairs of atoms separated by one,
two, or three consecutive bonds are excluded. This is the typical
CHARMM convention.18 The interaction energy between two dis-
similar non-bonded atoms is estimated by the Lorentz-Berthelot
combination rules, i.e. σi j =

σii+σ j j
2 and εi j =

√εiiε j j.19

The bonded interaction consist of stretching, bending and tor-
sional contributions

Ubond({Ri, i = 1,N}) =Ustr({Ri})+Ubend({Ri})+Utors({Ri}. (5)

where each term is given by a quadratic function of the deviation
of bond lengths and distances from their equilibrium value.

While a conventional quadratic bond stretching potential pro-
vides a fair description of the low energy portion of the system
potential energy surface, it does not account for the anharmonic-
ity of real bonds under high stress, and in particular it does not
allow for bond breaking, which is what we are concerned with in
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this work. In our minimal reactive force field, we therefore re-
place the conventional quadratic form of standard bond stretch-
ing potential with a Morse potential

Ustr({Ri, i = 1,N}) = Di j

[
1− e−αi j(ri j−r̄i j)

]2
, (6)

which saturates to a finite value at large separations. Here Di j is
the dissociation energy, r̄i j is the equilibrium bond distance and
αi j gives the width of the potential. If the bond length reaches
a certain cut-off distance the bond is permanently removed. For
these simulations a cut-off distance of 4 Å was used. For the C-C
bond, this effectively reduces the dissociation energy by 2%. As is
conventional, we do not take into account the zero point energy
of the vibrational levels of around 4 kJ/mol. The required param-
eters for the dissociation energy Di j are obtained from density
functional computations of the same bond breaking,20 and the
parameters for αi j are found by requiring the Morse potential to
have the same curvature in the minimum as the harmonic bond,
i.e. αi j =

√
Ks

i j/2Di j, where Ks
i j is the force constant in the har-

monic potential

Uharmonic({Ri}) =
1
2 ∑
{i j}

Ks
i j[ri j − r̄i j]

2. (7)

The stress on end-bonds joining chains to the clamps is enhanced
by inertia effects. To avoid their preferential breaking, these
bonds are modeled with the harmonic potential. Our model cov-
ers only the C-C and C-O bond breaking events ofăinterest for
our study. Bond-order force fields such as ReaxFF21 could pro-
vide a more comprehensive view. However, this simple reactive
force-field suffices for our purposes.

The potentials for the bending and torsion read

Ubend({Ri}) =
1
2 ∑
{i jk}

Kb
i jk[θi jk − θ̄i jk]

2 (8)

and
Utors({Ri}) = ∑

{i jkl}
∑
{c}

Kt,c
i jkl [cos(ϕi jkl)]

c−1 , (9)

where i, j, k and l are atoms joined by consecutive covalent bonds,
Kb

i jk and Kt
i jkl are force constants of bending and torsion energy

contributions and θ̄i jk are equilibrium angles. These are cho-
sen to reproduce molecular properties measured by spectroscopy
or computed by ab-initio methods. Note that the sum over the
torsional coefficients includes every possible dihedral.ăMoreover,
bending and torsion terms are not removed whenever a bond
breaks.ăThis introduces a slight artifact into the potential energy
surface, whose eliminationăwould require recoding the computa-
tion of the angular part of energy and forces.

This united atom force field parameterization is taken from van
Zon et al.,22 based on a modification of the explicit atom force
field of Neyertz et al.23 The set of parameters used in our sim-
ulations is reported in Table 1 and 2. The time step used in the
simulations is 1 fs.

The initial configuration of the bundles is generated by placing
the end particles randomly within circular cross sections of area
of 16 Å2 per chain, and the rest of the beads in chain are placed at

Table 1 Force field parameters for the stretching, bending and for the
non-bonded interaction 16 with disassociation energies 20

Bonds Ks
i j [kJ/(mol Å

2
)] Di j [kJ/mol] r̄i j [Å]

C–C 2587.4 370.8 1.54

C–O 3094.0 344.5 1.43

Bends Kb
i jk [kJ/mol] θ̄i jk [Å]

O–C–C 727.7 110.0

C–O–C 1070.1 112.0

LJ-interaction σii [Å] εii [kJ/mol] qi [qe]

CH3 3.699 1.047 0.174

CH2 3.624 0.831 0.174

O 3.034 0.401 -0.348

equidistant spacing in the z-direction with a random component
in the xy-plane.

From the beginning of the simulation the fibers are stretched
between the two clamps. This is somewhat artificial, since poly-
mer chains at low strain tend to adopt a (nearly)-Gaussian coil
configuration, however it might correspond well to stretching ex-
periments using tweezers or AFM.

From these initial configurations the systems are subjected to
simulated annealing to reach low-energy structures closer to equi-
librium and what one would expect for experimental samples.24

During this process the Morse potential for the bond stretching is
temporarily replaced by the harmonic potential, and the samples
are heated up to about 1000 K before the temperature is gradually
decreased to the desired temperature during 1 ns while keeping
the force on the ends fixed at 1 nN per chain.

When the molecules are being stretched out, work is done and
energy is added to the system through the end-particles. For this
reason, it is necessary to use a thermostat that acts locally, and
does not regulate the temperature uniformly. The Langevin ther-
mostat is thus the preferred choice rather than the more com-
monly used Nosé-Hoover. The parameter for the relaxation time
in the Langevin thermostat was set to 1 ps.

We stretch the bundles either with constant strain rate, or con-
stant force, corresponding to the experimental conditions of con-
stant strain and constant stress measurements. In the constant
strain rate simulations, we increase the separation between the
clamps at a constant velocity. In the constant force simulations,
the position of the clamps is adjusted to keep the force on the
fibre constant at a pre-assigned value. In the simulations with
constant strain rate, the force that was applied to a chain before
it breaks does not get redistributed over the other chains. This
allows us to isolate the interaction between the chains from the
interaction mediated by the terminals, which cloud these effects
in a system with more realistic boundary conditions. The constant
stress condition, on the otherăhand, represents a molecular dy-
namics realisation of the well known fibre bundleămodel (FBM)
with global redistribution of load upon chain breaking.25 The two
modes of operation with constant stress and constant strain rate
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Table 2 Force field parameters for the torsion 16

Torsion [kJ/mol] Kt,0
i jk Kt,1

i jk Kt,2
i jk Kt,3

i jk Kt,4
i jk Kt,5

i jk Kt,6
i jk

O–C–C–O 2.211 15.194 17.844 -32.460 -13.871 -1.189 12.322

C–C–C–O 5.183 5.610 6.272 -15.428 -0.678 -4.568 3.567

have been carried out with the LAMMPS options aveforce and
move respectively. In one particular sample, torque was added on
the atoms on the terminations in the lateral direction with the op-
tion addtorque. The molecular dynamics simulations have been
carried out with finite boundary conditions in all directions.

For the analysis of trajectories, chains are identified as neigh-
bours if the distance between the endpoints on the terminals are
less than 1.5 times the estimated bulk separation of the chains,
estimated from simulations with 100 chains. Chains with less
than six neighbours are counted as part of the contour. Both cri-
teria were validated by visual inspection of the cross sections for
a number of bundles.

2.2 Ab initio simulations

Qualitative and quantitative aspects of the breaking of PEO chains
at T = 0 K have been investigated by density functional (DF) com-
putations. We used the plane wave-pseudopotential formulation
of DF theory implemented in CPMD ab-initio simulation pack-
age,26,27 with the exchange-correlation energy given by the gen-
eralised gradient approximation of Perdew, Burke and Ernzerhof
(PBE).28

The system is enclosed in an orthorombic simulation cell with
periodic boundary conditions. The plane wave basis of recipro-
cal lattice vectors is included up to a kinetic energy cut-off of
120 Ry, with the sampling of the Brillouin zone limited to the Γ-
point. This last approximation is justified by the large size of the
simulation box, and by the insulating character of the material.
Only valence states are included in the computation, and the core
valence electron interaction is represented by ab-initio norm con-
serving pseudopotentials of the Troullier-Martins type.29 Disper-
sion (van der Waals) interactions are essential to ădescribe lateral
chain-chain cohesion. In the present study ăthey are accounted
for using the semi-empirical approach by ăGrimme.30

In all samples, chains extended along the entire length Lz of the
longest side of the periodic orthorhombic simulation cell to mimic
an infinitely long polymeric fibre. The periodicity along x and y
at Lx = Ly = 14.4 Å has been set to keep the lateral interaction
of periodic replicas low. Stretching is imposed by increasing Lz

beyond its initial value of ∼ 3.2 Å per monomer, with the T = 0 K
condition enforced by minimizing the potential energy by means
of quenched MD. Additional DF computations have been carried
out on crystalline PEO starting from the experimental structure
and unit cell of Ref.31.

Most computations have been carried out in the spin-
compensated picture. Since this might break down in proximity
of the bond breaking, a few test computations have been car-
ried out considering unconstrained spin-orbitals, including the
possibility of bare spin polarisation in an open shell electronic

structure. These tests did not provide any evidence of local spin-
uncompensated domain, hence the results reported in the follow-
ing section all refer to spin compensated computations.

3 Results
3.1 Chemistry of bundle breaking and ab-initio simulations

We begin by investigating in detail the chemistry of bundle break-
ing, which is however only possible for the smallest bundles, as
it requires ab initio simulations. Hence, density functional simu-
lations of stretching and breaking of chains at T = 0 K have been
carried out on samples made of one and two PEO chains, each
chain consisting of 10 -(CH2)2O- monomers.

3.1.1 Energy versus strain relation

The potential energy per monomer upon stretching a single PEO
chain is shown in Fig. 2. A fit of the computational data using the
anharmonic functional form:

V (ε) =V0 +αε2 +βε3 +δε4 (10)

with α > 0, where the strain per monomer ε = (Lz − L0
z )/L0

z
provides both an estimate of the minimum energy periodicity
L0

z = 3.46± 0.05 Å and an estimate of the potential energy V0 at
periodicity L0

z . The relatively large uncertainty in L0
z is due to

a number of reasons. At low strain the potential energy is con-
trolled primarily by weak torsional restoring forces, the energy
optimization with respect to the atomic coordinates is slow, the
computed potential energy shows small amplitude fluctuations
around the minimum, and even the anharmonic fit is not very
accurate at negative strain.

To translate V0 into a binding energy we also computed the
ground state energy of the PEO monomer (CH2)2O (see Fig. 2).
Hence, the computed cohesive energy per monomer Vc = 103
kJ/mol in the single chain refers to the ring-opening polymeri-
sation reaction from the ethylene oxide monomer, which is the
simplest epoxide ether. Each atom has the same number and type
of bonds in the monomer and in the chain, and the relatively low
Vc represents the energy gain in releasing the large strain that is
apparent in the monomer ground state geometry.

With length increasing beyond L0
z , the fit of Eq. 10 becomes ac-

curate, and faithfully reproduces the system potential energy up
to ε = 0.28. We observe that at low strain ε the dependence of po-
tential energy on ε is remarkably anharmonic, as reflected in the
behaviour of dV (ε)/dε reported in Fig. 2, which clearly deviates
from Hooke’s law in proximity of ε = 0. This is apparently due to
the interplay of torsion, bending and stretching energies, whose
relative size and role changes progressively with increasing strain.

A linear regime in dV (ε)/dε emerges at intermediate strain
0.04 ≤ ε ≤ 0.15. However, this linear term does not go through
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Fig. 2 Top: the potential energy of one and two PEO chains as a
function of the strain ε = (Lz −L0

z )/L0
z , where Lz is the periodic length

corresponding to one PEO monomer per chain and L0
z is the deviation

from equilibrium at L0
z = 3.46±0.05 Å for the single chain; L0

z = 3.26±0.05
Å for the double chain; L0

z = 3.27±0.05 Å ăfor the crystal sample. The
same quantity is reported for the stretching of the PEO crystal cell along
the direction of chains, representing the limit of an infinitely extended
bundle. Dots: simulation results (DF); full lines: interpolation by the
anharmonic fit in Eq. 10. Middle: the stress as a function of the strain,
computed by the anharmonic fit in Eq. 10. All energies refer to the
single monomer. Bottom: The effective Young’s modulus, assuming a
cross sectional area of S = 16 Å2 per chain.

the origin as in Hooke’s law, but it is given by dV (ε)/dε =

k(L0
z )

2(ε − ε0), with k = 653 kJ/(mol Å2) and ε0 ∼ 0.02. An ef-
fective Young’s modulus Ȳ (ε) can be estimated from the second
derivative d2V (ε)/dε2, that represents an effective strain depen-
dent force constant k(ε). To turn k(ε) into Ȳ (ε), we need to at-
tribute a nominal cross section S to the single chain. This can be
done using experimental data on the chain-chain distance (d = 4.3
Å ) in crystal PEO.31 Assuming hexagonal cross sections, one
obtains S = 16 Å2. Since the force constant depends on ε, also
Ȳ (ε) is a function of strain, growing from Ȳ (0) = 82 GPa at L0

z to
Ȳ (ε = 0.1) = 246 GPa at Lz = 3.8 Å /monomer. Both these values
are large, with the high-strain value being comparable to steel.
Even the highest value can be understood by considering that it
refers to the stage of straining dominated by the stretching of C-C
and C-O covalent bonds.

It is worth emphasising that this high estimate of the Young’s
modulus is not directly related to the curvature of the poten-
tial energy around its minimum, but corresponds to a high load
elastic regime in which a combination of bending and especially
stretching energies provide the restoring force opposing further
elongation of the chain.

In addition, the stretching process in aligned chains does not
correspond to the elastic deformation of a macroscopic PEO sam-
ple, in which the averaging over glassy domain and crystal grains
of different orientation give origin to a linear (elastic) regime at
low strain, of Young’s modulus and elastic constants much re-
duced with respect to the values computed for oriented, defect-
free chains.

3.1.2 Structural changes upon stretching

The non-linear dependence of dV (ε)/dε on load is reflected in the
strain dependence of the C-C and C-O bond lengths, reported in
Fig. 3, of bending angles, shown in Fig. 4, and of dihedral angles
shown in Fig. 5. The plots confirm that, as expected, dihedral
angles are the first to manifest sizable strain, followed by bend-
ing, and stretching in the last stage. The MD results for the bond
lengths match the DFT results over the entire range. The angles
are shifted by about 3 to 4 degrees in the range we are interested
in but otherwise also show similar behaviour as well. Only the
torsional angles show significant quantitative deviation between
MD and DFT calculations. This could be related to a shift in the
hybridisation of the C atoms (see below), which is not captured
in the classical force field. Regardless, the high-strain behaviour
is dominated by bending and stretching, and therefore this differ-
ence will likely not have a qualitative effect on the behaviour at
high strain, which is what we focus on in this work.

Deviation of the applied force from the linear behaviour at ε >

0.19 corresponds to the onset of high-strain anharmonicity, which
dominates the system behaviour in the last stages of stretching.
The applied force reaches its maximum at ε = 0.22. Beyond that
length, the force decreases with increasing strain, and the system
would be unstable under constant stress conditions. If subjected
to thermal fluctuations at non-zero temperature, it would break
even earlier. The clearest signature of breaking appears in the
strain dependence of bond lengths. More in detail, the strain de-
pendence of C-C and C-O is non-monotonic at first, then both
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1
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Fig. 6 Comparison of the vibrational density of states (V-DOS) computed
by DF at two different values of the longitudinal periodicity: ε = 0.00
(blue line) and ε = 0.16 (red line).

bond lengths increase linearly for 0.04 ≤ ε ≤ 0.2,with a relative
variation larger for the C-C than for the C-O bond length. Non-
linearity in the strain dependence of the bond lengths appears at
ε ∼ 0.23. Above this length the slope of C-C with strain turns up-
wards, indicating the incipient failing of C-C bonds. Anharmonic-
ity of the restoring force and non-linearity of bond lengths versus
strain are fully developed at ε ∼ 0.26, an elongation at which the
single chain appears broken at several C-C bonds even by visual
inspection of simulation snapshots. Remarkably, the trend shown
by C-O over the same range of global strain is opposite, since C-O
saturates at a fairly high value while C-C increases rapidly.

An interesting view of the same breaking process is obtained
by looking at the standard deviation along the chain of individual
bond lengths, shown in the error bars of Fig. 3. The minimisa-
tion of the chain energy in the anharmonic regime at low strain
makes bonds slightly inequivalent from each other despite con-
necting the same type of atom. Thus, the standard deviation σ of
chemically equivalent bond lengths is not negligible at low strain.
Then, σ decreases with increasing strain, since restoring forces
become stronger, making bond lengths better defined. Eventually,
σ shows a rapid and drastic increase above ε = 0.23, providing the
most unambiguous sign of chain breaking.

The spread of C-C bond lengths leading to breaking could be
reflected in spectroscopic data. To highlight this effect, we com-
puted by DFT the vibrational density of states of the single PEO
chain at three different values of the longitudinal periodicity, cor-
responding to ε = 0, ε = 0.16 and ε = and ε = 0.25. At the
near-equilibrium periodicity of ε = 0, the vibrational density of
states shows the typical features of similar organic systems, with
a high frequency band at 2800 ≤ ω ≤ 3100 cm−1 due to the C-
H bond stretching, an intermediate band due to bond bending
at 1200 ≤ ω ≤ 1600 cm−1, and a broad background of modes at
0 ≤ ω ≤ 1200 cm−1, of mixed character but consisting primarily
of bond-torsion modes (See Fig. 6). With increasing strain, the
C-H stretching band moves to somewhat higher frequency and
splits into a symmetric (at the highest frequency) and an anti-
symmetric (at slightly lower frequency) C-H stretching. Bend-
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ing modes move to slightly lower frequency, while the range at
ω ≤ 1200 cm−1 shows the major and least predictable changes,
that could easily be detected by spectroscopy and could be used
to monitor the system evolution up to near breaking conditions.
The chain breaking itself, taking place at ε = 0.23, is likely to be
a stage too short to be characterised by spectroscopy. Moreover,
the changes in the vibrational DOS upon breaking are less easy
to predict and to interpret, since new molecular species appear in
the system, possibly spin-unpaired radicals, not easily accounted
for even at the DF-level.

Notice that with increasing strain bending angles tend to 120◦

and dihedral angles tend to 180◦, values that characterise organic
structures of sp2 bonding. Since bonding angles modulate the
size of Hamiltonian matrix elements, their correspondence with
the sp2 geometry suggests that the sp3 bonding of the unstrained
chain turns to sp2 at high strain. The change of electronic struc-
ture with increasing strain is supported by the computation of
atomic charges, evaluated by the electrostatic potential (ESP)
method.32 The results show an enhancement of atomic charges
with increasing strain, followed by a sudden drop at breaking.
These effects are not accounted for by standard reactive classical
force fields, such as ReaxFF.21

As already stated, the single PEO chain does not collapse upon
crossing the length corresponding to the maximum restoring
force. In other words, the chain does not snap during simulated
breaking, because of the constant strain condition enforced by
these DF simulations, and of the absence of lateral perturbations
from thermal fluctuations that could undermine the strained ge-
ometry in its metastable regime. Moreover, no simple healing
process is available to the single chain, which splits in a collec-
tion of geometrically equivalent strained epoxy units. In reality,
it might be practically impossible to maintain (meta)-stability be-
yond the linear stages, at ε > 0.19.

3.1.3 The two-chains system

To assess the role of chain-chain interactions the simulation of
stretching at T = 0 K has been repeated for a sample consisting of
two chains. The effect of these interactions turns out to be sizable,
and, surprisingly, it has the effect of decreasing the strength of the
bundle under tensile load.

Also in this case, strain has been imposed by changing the pe-
riodicity of the unit cell containing 2 × 10 PEO monomers. As
before, for any given periodicity, the potential energy V (ε) has
been carefully optimised with respect to the atomic positions by
quenched molecular dynamics, and the resulting V (ε) has been
fitted by the same expression of Eq. 10. The length of minimum
potential energy turns out to be L0

z = 3.26 Å , i.e., nearly 0.2 Å
shorter than for a single chain. This could be due to the effect
of the surface tension (surface energy, at T = 0 K) per unit length
of the bundle, which is stronger for two chains than for one, and
tends to reduce the surface area and thus the length of the system.

Comparison of the ground state energy of the single and dou-
bleăPEO chain computed at the DF level allows us to estimate the
chain-chain cohesive energy of two chains at 1.2 kJ/mol per PEO
monomer. A similar comparison for the crystal sample gives a co-
hesive energyăof 13.1 kJ/mol per PEO monomer. ăWe emphasise

Fig. 7 Partial healing of the broken two-chain bundle.

that this cohesive energy arises from the chain-chainăinteraction,
due to dispersion energy only, and without any ăreference to the
energy gained in forming chains from theăepoxide monomer.

With increasing strain the evolution of V (ε) (shown in Fig. 2)
qualitatively follows the same behaviour of the one-chain case.
The computation of dihedral angles, bending angles and bond
stretching shows that also these structural parameters follow the
same trends in both cases, consisting at first in the deformation of
dihedral angles, then of bending angles and finally of stretching
bond distances. A quantitative comparison is not easy, because
of the different reference length L0

z of the two samples. It is ap-
parent, however, that the two-chains system breaks at a shorter
length and at a lower applied force per chain than in the single
chain case. In the case of two chains, the apparent Young’s mod-
ulus computed from d2V (ε)/dε2 depends on strain, starting from
about 2 GPa at low strain, and reaching 183 GPa at high strain.

Analysis of configurations shows that the monomers in the two
chains never really align in the lateral direction, confirming the
sizable role of chain-chain interactions. These interactions are
apparently amplified by the helicity of each PEO chain, adding a
longitudinal modulation of short-range repulsive interactions in
addition to the attractive dispersion forces. The longitudinal cor-
rugation in the interaction energy, in particular, gives rise to mul-
tiple local minima in the potential energy, that make it difficult to
unambiguously identify the ground state of bundles.

3.1.4 Chemical rebonding after chain breaking

Ab-initio computations offer a glimpse of the events following
the breaking of individual chains in the two-chains system. We
find that at first, the separation of one chain into nearly equiva-
lent segments is observed, terminated by planar OCH2 groups, in
which C is in the sp2 electronic configuration. Then, interaction
with the neighbouring chain causes the collapse of the bundle,
with a short sequence of chemical changes that carry out the par-
tial healing of the broken two-chains bundle as displayed in Fig. 7.
At long times, the healing results in finite chains terminated by
OH on one side, and planar OCH2 on the other side, with the re-
lease of a few epoxide ether monomers. The post-breaking evolu-
tion given by DF computations might be affected by limitations of
the approximate DF approach in tackling open shell species, and,
in any case, it is not correctly reproduced by the classical force
field model, even at the qualitative level. Perhaps it might be de-
scribed by some highly sophisticated reactive force field models,
that, however, require heavy stages of parametrisation.
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Fig. 8 Final state upon stretching a crystal sample up to the breaking
point. The system has been rotated along the long axis to expose chains
that otherwise are partially hidden in the trapezoidal cross section. Heal-
ing takes place by connecting neighboring chains forming loops returning
to a single clamp. One of the chains appears to be broken because of
periodic boundary conditions.

3.1.5 Stretching crystalline PEO

To assess the effect of helicity of PEO chains and of lateral chain-
chain interactions, simulations have been carried out for the ex-
perimental crystal structure of PEO, in which chains are closely
packed. In our study, the periodic system is seen as the limiting
case of thick bundles. The apparent effect of the condensed en-
vironment is to give a complex unit cell, containing four chains
and 28 monomers in total, with an average equilibrium length
per monomer of 3.27 Å.

Especially at low strain, the V (Lz) curve (see. Fig. 2) for the
extended system shows a fine structure, apparently due to the lat-
eral interactions, creating conditions of local minima and some-
times preventing a complete energy optimisation. Nevertheless,
the energy increase with increasing periodicity at low strain is
more parabolic than in the single and double chain case, since
in the condensed phase it is more difficult to decouple torsion,
bending and stretching than in the few-chain samples. As a re-
sult, the apparent Young’s modulus Ȳ computed from the strain-
dependent force constant is somewhat more constant than in the
one- and two-chain cases, varying from Ȳ = 75 GPa at low strain to
Ȳ = 190 GPa at intermediate strain. The bundle breaks at shorter
periodicity per monomer (Lz = 3.7 Å) than the one and two-chain
system. Also in this case, the breaking of one chain destabilises
neighboring chains, giving rise to chemical reactions. The healing
of broken bonds is complete, giving rise to a set of loops breaking
the continuous connection between the two sides of the broken
bundle, without leaving behind any radical species as shown in
Fig. 8.

As a result of the healing process, the final potential energy
per monomer is only 3.2 kJ/mol higher than the ground state en-
ergy. The low energy of the final state emphasises the fact that
bundles become metastable very soon upon stretching, and only
the kinetic barrier encountered by the healing process prevents
the breaking at much lower strains and stresses than found in the
simulation. The argument is even more compelling for thick bun-
dles, in which healing might occur by reacting with neighboring
chains, and for long bundles, since the energy required for a given
relative stretching is extensive, and the energy required to break
a chain is a constant.

There are obviously many things in the chemistry of the chains

that are not captured by the classical force field. The most impor-
tant among them is the fast chemical rebonding of chains follow-
ing their breaking under strain, effectively removing all dangling
bonds from the system. However, from comparing the behaviour
of the bond stretching and bending at high strain, we conclude
that the classical force field captures the behaviour of the chain
under high strain sufficiently well up to the breaking point.

3.2 Stretched bundles with N > 2 chains
We continue by investigating the structural properties of stretched
bundles of up to 24 chains, now using molecular-dynamics simu-
lations and potential energy minimisation based on the empirical
force field described above. At any non-vanishing temperature,
entropy effects turn unconstrained chains into coils, whose radius
scales like the square root of the number of monomers N. In addi-
tion, there are finite-size effects and bead-bead, i.e. non-bonded,
interactions which cause deviations from the ideal scaling. In
our systems, the clamps and the tension applied to the bundle
change the picture qualitatively and quantitatively. An example
of a stretched bundle at finite temperature is shown in Fig. 1.

3.2.1 Structure at low and vanishing temperature

To give a first characterisation of structural, cohesive and elastic
properties of PEO bundles, and to provide a term of comparison
for the results of MD simulations to the DF simulations, we first
investigate the bundles in the limit of very low temperature and
under moderate tensile load (κ = 1 nN per chain), an order of
magnitude below the breaking limit. At low temperature T this
moderate tension is sufficient to force the bundles chains into ap-
proximatively linear configurations.

Once chains adopt the linear configuration, the bundle struc-
ture is determined mainly by the geometry of its cross section,
that can be visualised as a 2D cluster, in which the interaction
among particles is represented by the integral along z of the lat-
eral chain-chain potential energy. The full 3D system, however, is
more complex due to the nonisotropic lateral interactions.

To approach the T = 0 K condition, the energy of N-chain bun-
dles is first minimised with respect to all coordinates (at fixed
applied force) by short annealing runs of 1 ns. These cannot
guarantee that the simulation will reach the ground state of the
system, but the relatively ordered geometry of samples up to at
least room temperature suggests that the potential-energy land-
scape consists of only a few major valleys, and the geometries
determined by short annealings are likely to be representative of
low temperature structures, providing information also on defects
and isomers.

The sequence of clusters obtained in this way is reported in
Fig. 9. As already stated, in this figure all bundles are under a
1 nN/chain tensile load. Once again, as expected, the compact
hexagonal motif dominates the structure of the 2D clusters. How-
ever, non optimal geometries arise because of short annealing and
incomplete optimisation. Moreover and more importantly, both
unexpected 2D geometries and longitudinal variations in the cross
section arise from the spontaneous helicity of PEO chains, which
adds a small but complex perturbation to the lateral interactions.

An example of nearly degenerate isomers in the 2D cluster
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1 nm

(a) 4 chains (b) 5 chains (c) 6 chains

(d) 7 chains (e) 8 chains (f) 9 chains

(g) 10 chains (h) 11 chains (i) 12 chains

(j) 13 chains (k) 14 chains (l) 15 chains

(m) 16 chains (n) 17 chains (o) 18 chains

(p) 19 chains (q) 20 chains (r) 21 chains

(s) 22 chains (t) 23 chains (u) 24 chains

Fig. 9 Cross sections of bundles of sizes from N = 4 to N = 24 at T = 0
K with a constant force of 1 nN per chain.

1 nm

(a) Vc/N = 583 kJ/mol (b) Vc/N = 594 kJ/mol (c) Vc/N = 597 kJ/mol

(d) Vc/N = 641 kJ/mol (e) Vc/N = 646 kJ/mol (f) Vc/N = 650 kJ/mol

Fig. 10 Isomers of the 2D cluster representing the structure of the
20-chain bundle at T = 400 K with a constant force of 1 nN per chain
obtained by equivalent optimisation cycles started from independent con-
figurations. The cohesive energy per chain associated with each config-
uration averaged over 2 ns is given in the sub-caption. Fig. (a)-(c)
represent low cohesive energy configurations, and (d)-(f) represent con-
figurations with high cohesive energy.

representation, corresponding to different bundle polymorphs, is
provided by the structure of the 20-chain bundle (see Fig. 10),
found in several different configurations as a result of successive
fast optimisation cycles. The cross section may also change along
z, when one or more chains are not quite straight, but show a
marked winding around some other chain as seen in Fig. 10 (b).
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Fig. 11 Force elongation curves averaged over the three high energy
configurations showed in Fig. 10 (a)-(c) and for the low energy configu-
ration showed in Fig. 10 (d)-(f).

Fig. 11 shows the average force-elongation curves for the three
high-energy isomers shown in Fig. 10 (a)-(c), and for the three
low-energy isomers shown in Fig. 10 (d)-(f). The initial slope is
the same, but the high-energy isomers are able to sustain a little
more force than the low-energy ones. This observation is reminis-
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cent of mechanical hardening in metals. However, the two effects
are not obviously related, since hardening in metals is caused by
defects blocking the movement of dislocations, while in our sys-
tem dislocation dynamics does not play an obvious role in the
yield. It is thus not clear what is the origin of this effect, whose
magnitude, in any case, is apparently quite small.

The ideal, regular-looking cross-section is not always the one
with the lowest energy. In several cases, the atomistic bundles of
N chains adopt a cross-section different from the one in the ideal
sequence, contradicting the assumptions of cylindrically symme-
try and invariance along z. We found that this difference is often
not the result of incomplete optimisation of the atomistic bundles,
since preparing them according to the ideal cylindrical cross sec-
tion almost invariably results in a higher potential energy. Struc-
tures of this type clearly point to the effect of the PEO chain he-
licity on the geometry of bundles.

The plot of the cohesive energy per chain in the lowest energy
structure for each N displays the characteristic trend found in the
size dependence of cohesive energies for atomic and molecular
clusters. Cohesive energy increases rapidly at first, and then sat-
urates slowly to the cohesive energy per chain of a hexagonal ar-
rangement of linear and aligned chains. The shortfall of cohesive
energy at low N can be attributed to the surface energy, whose
fractional weight on the total cohesion is highest for N = 1, and
decreases as

√
N with increasing size.

To leading order, the energy of the bundle can be estimated
from the volume and the surface area, i.e. the compact surface de-
limiting the bundle. First, we quantify the surface area, or equiva-
lently, the perimeter of the 2D cluster. To this aim, we attribute an
hexagonal cross area to each chain in the bundle, with an inter-
chain distance d = 4.3 Å . Then, the perimeter CN of the 2D cluster
is determined by counting the number of hexagon sides exposed
to the vacuum. The size dependence of the cohesive energy of the
bundle is represented as:

Vc(N) = NV0 −σC (11)

where V0 and σ represent the bulk energy per chain and the sur-
face energy, respectively, to be determined by fitting the numeri-
cal values of the cohesive energy. Since, on average, the contour
length scales as C ∝ N1/2, we recover the expected scaling of the
cohesive energy per chain:

Vc(N)

N
=V0 −α

σ
N1/2

(12)

where the numerical coefficient gives the (average) proportional-
ity of CN and N1/2

Comparison of the computed Vc(N) with the result of the
smooth fit in Eq. 12 shows a good match, as seen in Fig. 12. The
single sample with N = 100 had Vc/N = 760 kJ/mol after 1 ns of
annealing, which is about 2% higher than the prediction given by
the fit for T = 300 K in Eq. 12. To investigate the impact of the
annealing time, the annealing procedure was repeated with an
additional 2 ns of annealing time, which increased the cohesive
energy by about 3%. While longer annealing times indeed results
in lower energy structures, 1 ns is considered to give a reasonable
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Fig. 12 Computed cohesive energy per chain as a function of size N at
T = 0,300,400 K, with a fit by the smooth expression in Eq. 12, repre-
senting the interplay of bulk cohesion and surface energy.

balance of realism and efficiency.
The N and

√
N scaling of cohesive energy is less apparent in the

average bundle length L(N) measured by the separation of the
clamps and Young’s modulus at non-zero temperature, as we will
see in the next section 3.2.2. In these cases, we see a sequence of
peaks and dips, that point to sizes whose packing exposes an op-
timal or unfavored contour, respectively. The single sample with
N = 100 at T = 300 K had a length of L = 114.6 Å after the first
annealing run of 1 ns, and a length of L = 114.7 Å after an ad-
ditional annealing run of 2 ns, which is about 0.2% lower than
expected from the smaller systems.

At T = 0 K we determine the relation of length Lz and stress
by increasing Lz in regular steps, and minimizing the potential
energy at each step with respect to all internal degrees of free-
dom. Stress κ is computed from the forces on the terminals. The
Young’s modulus for the breaking of a single chain was calculated
from the slope of the beginning of the strain curve to be 144± 6
GPa, again assigning the chain a cross sectional area of S = 16 Å2.

Breaking at T = 0 K takes place in a localised way, focusing
strain on a limited stretch of the chain when the system crosses
the stability boundary. At T = 0 K, the pictures of breaking at
constant stress or constant strain are equivalent. However, these
two modes of stretching differ in very important aspects at non-
zero T , because of the role of fluctuation and thermal activation.

3.2.2 Nonzero temperature

At finite temperature, we use the simulated annealing protocol
described in Sec. 2 at the desired temperature, to obtain equi-
librium conditions at a constant applied force per chain. Typical
cross-sections of the bundles obtained in this way are shown in
Fig. 13. The figure shows that the hexagonal structure observed
at low temperature remains highly ordered even at high tempera-
tures. When the number of chains in a bundle has specific values
(such as 3, 7, or 19), a shape of minimal contour forms with com-
plete shells. However, when the number of chains is not one of
these “magic” numbers, then there are typically several possible
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isomers appearing. Nevertheless, the hexagonal lattice structure
usually remains. We have observed one special case, for N = 22,
where we have found a 7-fold symmetric bundle with full shells.
In extended 2D lattices, such defects have to be coupled to a 5-
fold symmetry defect, forming the two end points of a dislocation
line. In finite systems, one of the two conjugated defects may
be annihilated at the surface. Sometimes, but especially if we
do not anneal the system and instead run it at constant temper-
ature, we find a more disordered state, where the isomerisation
changes along the length of the bundle. We have also observed
that isomerisation can also change with time.

The lengths of the bundles at T = 300 and 400 K with a con-
stant applied force per chain of 1nN is shown in Fig. 14. For
comparison, a single chain at T = 0 K had a significantly longer
length of 115.7± 0.1 Å. The length depends only weakly on the
size of the bundle and levels off quickly for bundles consisting of
more than 20 chains. For small bundles, there is a clear signa-
ture of the “magic” numbers at 3 and 7, but for larger bundles
this effect is smaller and washed out by statistical error and ther-
mal noise. Overall, the effect of the bundle size is significant, but
small. The cohesive energies show even less of the structure (see
Fig. 12). At this strain, the entropic effects are small, which is
evident from the weak temperature dependence of both the av-
erage length and the Young’s modulus. The general trend is the
same as for the ab-initio computations presented in section 3.1 in
that the equilibrium length is shorter with increasing bundle size.
This can be seen clearly in Fig. 15, where the average length at
which the first chain in the bundle breaks is shown as a function
of bundle size. For the bundle with 100 chains at T = 300 K the
first chain broke at a length of L = 134.8 Å, in good agreement
with the picture from Fig. 15.

The force per chain as a function of strain is shown in Fig. 16
for a number of different-sized bundles at various temperatures.
For all sizes, there is an initial linear elastic regime. The force re-
mains almost linear in the strain until the first chain in the bundle
breaks.

The Young’s modulus can be computed from the slope of κ(L)
at low strain. Here it was estimated by linear regression up to
a strain of 0.05, about 30% of the strain at which the first chain
breaks. The resulting Young’s moduli are presented Fig. 17. The
modulus display no significant size dependence for systems of size
N > 9, also the bundle of 100 chains at T = 300 K had a Young’s
modulus of Y = 130 GPa. Experiments with Linear PE also in-
dicate that the Young’s modulus to a good first approximation
is independent of the molecular weight, as the macroscopic de-
formation is the dominant factor.33 In agreement with previous
findings34, one can see that a decrease in temperature will lead
to an increase in the modulus.

The estimated modulus is high. The experimental values for the
Young’s modulus of bulk PEO is typically on the order of 0.1-20
MPa.35–37 Though the Young’s modulus and the tensile strength
of these amorphous samples are not determined by the stretching
of covelent bonds, but rather by weaker interactions.38 For the
elastic properties of PEO along the chain axis, an experimental
value of 10 GPa has been reported,39 in well agreement with com-
putational results.9 The values we find from our simulations for

1 nm

(a) 4 chains (b) 5 chains (c) 6 chains

(d) 7 chains (e) 8 chains (f) 9 chains

(g) 10 chains (h) 11 chains (i) 12 chains

(j) 13 chains (k) 14 chains (l) 15 chains

(m) 16 chains (n) 17 chains (o) 18 chains

(p) 19 chains (q) 20 chains (r) 21 chains

(s) 22 chains (t) 23 chains (u) 24 chains

Fig. 13 Cross sections of bundles of sizes from N = 4 to N = 24 at T = 400
K with a constant force of 1 nN per chain.
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Fig. 14 Average bundle length L(N) for 100 samples as a function of
size N with a constant force of 1 nN per chain at T = 300 K and T = 400
K.
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Fig. 15 The average strain at which the first chain in the bundle breaks,
indicated as εb, for 100 samples at constant strain rate 0.8 m/s as a
function of size N at T = 300 and T = 400 K.

PEO are much higher, comparable to the values for PE.40 Stretch-
ing of thermoplastic PE gives a Young’s modulus on the order of
1 GPa,41 while experiments with single crystals gives a modulus
in the range 168-278 GPa,42,43 and even up to 370 GPa for low
density films.39 Ab-initio computations of single chain PE gives a
modulus between 300 and 500 GPa.10,34,44

We can understand this by considering that the stretching con-
stants of bulk PEO in experiments is strongly determined by the
structure. A major difference between PE and PEO is that the
latter is known to have a loosely coiled confirmation.9 The high
modulus and high strength found in fibers relies mainly on high
polymer chain orientation and extension, and polymers with he-
lical chain configuration exhibit a much lower theoretical modu-
lus45. In our model the chains are extremely extended and or-
dered, producing systems far from the complexity of macroscopic
samples. Our semi-crystalline fibers resemble more closely the
structure of PE, and thus display similar mechanical properties.

3.3 Breaking
We now turn to the further stretching and finally breaking of the
larger bundles in the classical molecular-dynamics simulations.
We discuss here the results of simulations at a constant strain
rate, stretching out the bundles, until all the chains have broken.
Figure 18 shows a sequence of snapshots of a bundle of 17 chains
being stretched out and breaking.

The computational limiting resistance load κl was estimated
from the average curves in Fig. 16 to 30.5 ± 0.1 GPa at 300 K
28.4± 0.1 GPa at 400 K. For 0 K, κl was estimated to 36.9± 0.3
GPa using the same methodology with 10 samples of single chain
bundles.

Because our simulations are at constant strain rate, the force
that was applied to a chain before it breaks does not get redis-
tributed over the other chains. This allows us to isolate the inter-
action between the chains from the interaction mediated by the
terminals, which cloud these effects in a system with more real-
istic boundary conditions. If there were no relevant interaction
between the chains, then each chain would break independently,
and the fraction of broken chains would not depend on the bundle
size. We observe only a small systematic size dependence.

There are several important further observations that can be
made regarding the dependence of breaking on temperature and
bundle size.

3.3.1 Thermally activated breaking

At higher temperature, the chains are slighly shorter and the
Young’s Modulus is lower, in agreement with previous findings
from DF simulations of crystaline polyethylene.34 Also, chains
break earlier and breaking times follow a broader distribution.
Ideally, neglecting the weak lateral interaction, at T = 0 K, all
chains break at the same length.

The breaking rate of chains from the simulations is shown in
Fig. 19. The spread of breaking times and earlier breaking can
both be understood from thermal activation. Before the zero-
temperature breaking point is reached, the chains can break by
thermal fluctuations. At higher temperature, there are more and
bigger thermal fluctuations, and hence the chains may break more
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Fig. 16 The force per chain during constant strain rate simulations at 0.8 m/s for system of bundles of 1−24 chains of at T = 300 K and T = 400 K.
The lower inset shows the breaking part zoomed in, with lines indicating when the first chain broke on average in bundles of size N = 24, labeled as
εb. The upper inlet shows single samples with bundles of size N = 24, and again the lines indicate when the first chain in the bundle breaks.
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Fig. 18 Snapshots of a bundle of 17 chains under a constant strain rate
of 0.8 m/s, stretching out and breaking at T = 400 K.
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Fig. 19 The rate of chains breaking as a function of strain, for tempera-
tures T = 300 and T = 400 K averaged over bundles of size 16-24 chains
with 100 samples each. A fit using the expression for one-dimensional
thermally activated breaking, Eq. 15, is also included.

quickly. The activation free energy depends on the strain. At
low strain rates, it takes more time for thermal fluctuations to
overcome the higher barrier.

We can make some simple estimates of the thermally activated
breaking rate and dependence on strain rate and temperature.
For this purpose, we treat the chain as one-dimensional and as-
sume that the chain-chain interaction is negligeable. We assume
that each breaking bond experiences a mean field response from
the rest of the chain equal to the average force in the chain, F0.
The total potential-energy landscape then consists of a linear term
and the energy of the bond. For small forces, there is a deep min-
imum for the intact bond and an even deeper escape with a bro-
ken bond, with a high barrier inbetween. For some critical force
Fc this minimum completely disappears at rc, and even at T = 0
K the bond would break without any thermal activation. When a
bond breaks through thermal activiation, it can be assumed to be
close to this point and thus F0 is close to Fc.

We expand the potential-energy landscape around the breaking
point rc to the third order, and locate the nearest maximum and
minimum at a distance close to the breaking point,

∆r =

√
∆F
3C3

, (13)

where ∆F =F0−Fc and C3 is the third order expansion coefficient.
We can then obtain the escape rate from the Kramers rate given
by

τ−1 =
Ω2

2πγ
exp [−∆E/(kBT )] (14)

with Ω being the instantaneous effective oscillation frequency, ∆E
being the energy barrier and γ the microscopic friction coefficient
(viscous). We find

τ−1 =C∆r exp(−6C3∆r3/(kBT )) , (15)

with C a constant. This result contains several parameters that
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depend on the details of the complex potential landscape and dy-
namics, which we must obtain indirectly through fitting.

A fit of Eq. 15 to the simulation results is included in Fig. 19.
The expression fits well, but we note one odd result in the fit pa-
rameters. The value found for the parameter rc, 151.9±0.2 Å, the
length at which a break is immediate, is higher than the break-
ing length found in the 0 K simulations, 147.1±0.2 Å for a single
chain. This is probably related to the fact that the real energy
landscape is much more complicated than in our simple 1D esti-
mate, and there are several different reaction paths that may be
activated at different temperatures. We have also briefly tested
the dependence on the strain rate, and found that it behaves as
expected: At higher strain rate, the chains break at a higher strain.
The breaking rate, however, is not dependent on the strain rate,
which implies that we are indeed in the adiabatic regime.

3.3.2 Bundle size and structure

We have investigated the dependence of various observables on
the size of the bundle. Neglecting lateral chain-chain interactions,
the force versus strain curve would be the same for all sizes. Sim-
ulation results, however, show that the force per chain for bundles
of different sizes do not fall exactly on top of each other, but are
quite close. This observation points to the effects of chain-chain
interactions, which are small but not completely negligible, as al-
ready suggested for the results for the linear regime and for the
Young’s Modulus.

To deepen our understanding of the bundle effect on chain
breaking, we examine the location of the first bond that breaks in-
side the bundle. As seen in section 3.1, the C-C bonds are weaker
than the C-O bonds, and are therefore more likely to break. At
T = 300 K, 94.8% of the first bonds to break in each chain are
C-C bonds. This strengthens the connection to PE mentionened
in Sec. 3.2.2. At T = 400 K, 87.4% of the first bonds to break
in each chain are C-C bonds. Apart from this, the distribution of
breaking bonds is fairly uniform over the length of the chain, with
the exception of the end bonds, which we have kept as harmonic,
as is described in Sec. 2. If this is not done, they are about 3 times
more likely to break than other bonds.

We can also investigate the relation between the location of
the first chain that breaks and the structure of the cross-section
of the bundle. We characterise this aspect with the conditional
probability of a chain being the first to break given the number
of neighbours in the two-dimensional lattice of the cross-section.
This is shown in Fig. 20. The outer chains, with few neighbours,
are slightly more likely to be the first to break than chains inside
the bundle that are surrounded by other chains. As a result, small
bundles with relatively many outer chains show signs of yielding
earlier than large bundles. Two possible origins of this effect have
been considered, i.e., the rugosity of the chain-chain interaction
along the longitudinal direction, and the dependence of fluctua-
tions of individual chains on the number of neighbours.

The effect of the bundle size on the Young’s modulus or the
yield appears to be relatively small. This is likely due to the fact
that covalent bonds are much stronger than the other interactions
in the system, such as Coulomb and dispersion forces. In poly-
mers, also steric interactions are important, which could affect the
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Fig. 20 The ratio of the probability for a chain to break first b f given that
is has c number of neighbouring chains to the probability for a chain to
have c neighbouring chains. Two data sets with 100 samples per system
with bundles of sizes from N = 7 to N = 24 at T = 300 K and T = 400 K
respectively are compared to a data set of 100 samples with 7 chains with
an external torque at T = 300 K. The breaking simulations were carried
out with a constant strain rate of 0.8 m/s. The outer chains, with few
neighbours, are slightly more likely to be the first to break than chains
inside the bundle that are surrounded by other chains. The error bars
show the statistical error ∼ 1/

√
n.

breaking process through the roughness of the longitudinal chain-
chain interaction. We suspect that chain-chain effects would be
larger in systems with the stronger inter-molecular interaction
compared to bonding between monomers inside the chains.

3.3.3 Winding and defects

In metals, the increase of the yield strength in small systems is
related to the absence of localised and especially extended (dis-
location) defects. We therefore also briefly investigate here the
effect of defects and disorder on the yielding and creep of the
fibre bundles.

Figure 10 shows results for several bundles with the same num-
ber of chains but different order. One can see that the more
unordered cross sections are further away from equilibrium. At
the same elongation, some of the chains will not be straight, but
twisted around in some way, and subjected to higher forces. Thus
one would expect these bundles to break at a shorter elongation,
however the force-elongation curves in Figure 11 indicate the op-
posite.

To investigate this further, bundles of 7 chains was deliberately
twisted by applying a torque in the longitudinal direction applied
to the two constrained planes. The result of these simulations
is shown in Fig. 21. With the added torque, the 6 outer chains
are twisted around the central chain. The cross section and side
view are shown as well. All the outer chains are rotated about two
times around the center. The bundle with torque has a slightly dif-
ferent response during the stretching and breaks significantly ear-
lier than the untwisted bundle, as one would expect. The break-
ing statistics are included in Fig. 20, and indeed show that the
outer chains are by far the most likely to break. The inner chain
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without added external torque. The samples are stretched at a strain
rate of 0.8 m/s at T = 300 K. Both curves are averaged over 100 samples
of bundles with N = 7 chains. Side and front view snapshots are also
included at the top.

breaks first in only about 4% of cases.

3.3.4 Parameter dependencies

To asses the value and transferability of the reported findings,
it is useful to explore the robustness of the chosen parameters.
The role of the strain rate was briefly explored by stretching 100
samples of bundles with 7 chains at T = 300 K at a strain rate
of 0.4 m/s rather than 0.8 m/s. The average strain at which the
first chain breaks then decreased by 0.30±0.05% compared to the
values presented in Fig. 15, which could be reasonably explained
by thermal activation of breaking. The estimated rate of chain
breaking was similar for the two strain rates, and the estimated
Young’s modulus was the same within the accuracy reported here.

The choice of bond disassociation energy was briefly challenged
by running the same systems with 7 chains with a 8% reduced
bond disassociation energy, again with a strain rate of 0.4 m/s at
T = 300 K. Lowering the disassociation energy increases the role
of thermal activation of breaking, and these computations sug-
gests that the rate of chain breaking then is closer to what was
reported for T = 400 K in Fig. 19. The average strain at which
the first chain in the bundles broke decreased by about 1%, while
the Young’s modulus again was the same within the accuracy re-
ported here. An in-depth study on the role of the bond disassocia-
tion energy on the breaking of nanofibres could be an interesting
future project.

4 Summary and conclusions
We have investigated stretching and breaking of nano-scale poly-
mer bundles using computer simulations based on an empirical
atomistic force field and on a density functional approximation.
Simulated nanometrically thin bundles of PEO chains were sub-
jected to tensile load up to their failing.

The density functional (DF) simulations have been performed

for small systems, aiming at providing data to benchmark the em-
pirical force field, and to explore features such as re-bonding after
breaking that are not accounted for by the force field model. Over
a broad range of strain, the DF computations reveal a complex
picture. Stretching is resisted at first by torsional restoring forces,
and later by bending and stretching.

Stretching of a single chain consisting of ten PEO monomers
at T = 0 K provides an ab-initio estimate of the energy versus
strain relation. The results show that in the low-load limit the
energy curve is not simply parabolic, because of the interplay of
dihedral, bending and stretching terms determined by rather dif-
ferent force constants. At intermediate strain, where bending and
stretching dominate the system response, the simulation provides
a high estimate of the Young’s modulus that approaches the val-
ues measured for oriented carbon protuberances and graphene.

Under conditions of constant strain, a single chain has a broad
range of metastability even beyond the length of maximum restor-
ing force, due to the absence of lateral interactions that might per-
turb the linear arrangement of the chain. The picture is already
changed by increasing the system size to two parallel chains,
which surprisingly break at a shorter length and load than the
single chain. The chains are not perfectly in registry along their
common longitudinal direction due to the intra-chain interaction
and the helical structure of the chains, giving rise to multiple lo-
cal minima in the potential energy. The proximity of the two PEO
chains opens the way to chemical rebonding after breaking, re-
sulting in a sample made of free floatingăepoxide monomers, and
PEO segments terminated by -OH on oneăside, and by planar -
OCH2 on the other side. This partial healing might be affected by
the approximate DF approach in tackling open shell species, and
by the idealised setting of simulations, neglecting defects and im-
purities.

At the DF level, the limit of thick bundles has been investigated
by stretching a system made of the experimental unit cell peri-
odically repeated in space. In this case the stress-strain relation
is more linear down to low load, and the bundle breaks at an
even shorter length and load than the two-chains system. There
are obviously many effects in the chemistry of the chains that are
not captured by the classical force field. However, by comparing
the behavior of the bond stretching and bending at high strain, we
conclude that the classical force field captures sufficiently well the
behavior of the single chain under high strain up to the breaking
point.

To investigate larger bundles of up to 24 chains of 33 PEO
monomers, and one case of 100 chains, we have used molecular-
dynamics simulations. The classical force field in our simulations
uses a standard functional form for the system potential energy,
slightly modified in its stretching term to allow for breaking of
C-C and C-O covalent bonds. The bundles are stretched out using
two opposed planar structureless clamps. This geometry is greatly
simplified with respect to the structure of macroscopic polymers
but it is considered to provide a sufficiently realistic picture of
bundles of nanometric and sub-nanometric diameter under ten-
sion. Moreover, it allows us to isolate and study the effect of the
interaction between chains.

We have first determined the bundle geometry and structure
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under moderate tension at zero temperature, at ambient temper-
ature and slightly beyond, reaching up to 400 K. Beyond a mod-
erate load of the order of 1 nN per chain, the PEO chains tend
to align in the lateral direction, although they retain in part their
spontaneous helicity. When the chains are aligned like this, the
cross section of the fibre shows a clear structure of a 2D clus-
ter, that at low temperature is arranged according to a hexagonal
pattern.

Bundle properties depend on the number N of chains in a non-
monotonic way, and are marked by steps at discrete sizes that
correspond to the filling of shells in the 2D hexagonal cluster,
representing the analog of magic sizes in the physics of nanoclus-
ters.46,47 We obtain the strain versus load relation of the bundles,
from which the Young’s modulus, the elastic range and the limit-
ing strength have been determined. Deviations from linear elas-
ticity first occur upwards, corresponding to the stiffening of the
bundle due to an-harmonic interactions. At 95% of the limiting
load the stress-strain relation bends downwards, and the stress
vanishes over a narrow strain range where the bundles break.

Finally, we have simulated the failing of the bundles under load
slowly increasing towards the limiting resistance value. This last
computational experiment targets creep, but given the large ra-
tio of cohesive to thermal energies, together with the limited
time covered by MD, simulations closely approach the mechan-
ical breaking process.

The PEO bundles display a remarkably high tensile strength.
The ultimate stress was computed from the MD simulations to be
36.9± 0.3 GPa at low temperature, 30.5± 0.1 GPa at 300 K and
28.4± 0.1 GPa at 400 K, displaying a moderate temperature de-
pendence. The estimated Young’s modulus is also high, with DF
computations up to 80 GPa at low strain, and about 250 GPa at
intermediate strain. The fibres in the MD computations exhib-
ited a modulus of Y = 144± 6 GPa at low temperature, around
130 GPa at T = 300 K and 125 GPa at T = 400 K. As discussed in
Sec. 3.2.2, the high strength and stiffness are due to the the semi-
crystalline state of the fibres, resulting in samples displaying me-
chanical properties closer to that of crystalline PE, or even steel.
The matching of helical chains that locally is an essential struc-
tural feature of extended PEO systems at vanishing or low strain
is heavily dominated by the stretching, and the tensile properties
are limited primarily by the covalent bonds.

Our study of the relation between the location of the first chain
that breaks and the structure of the cross-section of the bundle
revealed that outer chains are significantly more likely to be the
first to break than chains inside the bundle that are surrounded by
other chains. Applying a torque on a set of samples emphasized
this effect.

We have investigated the effect of defects in the structure and
deviations from the ideal perfect bundles. Defects affect the ul-
timate strength of the bundles and are present down to the low-
est temperatures. We have identified a number of different types
of defects, such as chains twisting around the elongation axis,
non-optimal 2D isomers and 2D twinning of nanocrystals. At and
above ambient temperature all these types of defects form and
disappear in a dynamical fashion, rounding the steps at the shell
closing sizes, but up to at least 400 K the system retains a high

degree of ordering and a recognisable hexagonal structure. Or-
dering and tight packing of chains increase with increasing load.

The impact of the defects on the ultimate strength of the bun-
dles is nontrivial. In general, non-optimal isomers appear to in-
crease the strength somewhat. This observation is reminiscent
of mechanical hardening in metals. However, the two effects are
not obviously related, since hardening in metals is caused by de-
fects blocking the movement of dislocations, while in our system
dislocation dynamics does not play an obvious role in the yield.

Finally, the thermal activation of chain breaking was investi-
gated, and a Kramer’s-type expression for the breaking rate was
proposed and compared to simulation data. This expression was
based on a highly simplified picture, but nevertheless provides a
reasonable description of the data. Moreover, it gives us a mean
to extrapolate breaking rates and creep to different conditions.

PEO is a relatively simple polymer, and the results obtained in
this work demonstrate quite general properties. Thus, we expect
similar behaviour to appear in many other more complex mate-
rials that form bundles. However, the chain-chain interactions
are relative weak in PEO when compared to the bonds inside the
chain. The effects of the structure and chain-chain interaction
may thus be substantially bigger in bundles consisting of more
strongly interacting chains.
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