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Abstract. We numerically investigate Lyapunov instabilities for one-, two- and
three-dimensional lattices of interacting classical spins at infinite temperature.
We obtain the largest Lyapunov exponents for a very large variety of nearest-
neighbor spin-spin interactions and complete Lyapunov spectra in a few selected
cases. We investigate the dependence of the largest Lyapunov exponents and
whole Lyapunov spectra on the lattice size and find that both quickly become
size-independent. Finally, we analyze the dependence of the largest Lyapunov
exponents on the anisotropy of spin-spin interaction with the particular focus on
the difference between bipartite and nonbipartite lattices.
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1. Introduction

Investigations of the Lyapunov instabilities in many-particle systems are often
motivated by the role of chaos in the foundations of statistical physics [1, 2, 3], which
is still not fully understood. In general, interacting many-particle classical systems
are expected to be chaotic. The largest Lyapunov exponents and properties of the
entire Lyapunov spectra have been calculated numerically for classical many-body
systems, such as gases of hard-core particles [4, 5], fluids with soft interactions [6],
and lattice two-dimensional rotators [6, 7, 8, 9, 10], and analytically in a few
cases [11, 12, 13, 14, 15, 16, 17, 8, 9, 10]. In the present paper, we focus on lattices of
interacting classical spins.

Classical spins often appear in the theoretical studies as the large-spin limit of
quantum spins. Moreover, even when one deals with lattices of spins 1/2, parallels
between classical and quantum spin dynamics still remain. These parallels have
recently received much attention, in particular, in the context of the asymptotic
exponential-oscillatory behavior of nuclear spin decays in solids [18, 19, 20, 21, 22,
23, 24]. These decays were identified in Refs. [18, 20] with chaotic eigenmodes in both
classical and quantum many-spin systems.

Although it appears very likely a priori that lattices of interacting classical spins
exhibit chaotic dynamics, no systematic investigation of the chaotic properties of these
lattice was undertaken until our previous work [25], which presented a survey of the
largest Lyapunov exponents for a very large variety of spin lattices and Hamiltonian
anisotropies. The principal finding of Ref. [25] was that all Hamiltonians considered,
with the exception of the Ising case, led to chaotic dynamics as evidenced by the
nonzero value of the largest Lyapunov exponent. We also obtained both analytically
and numerically the power-law scaling of the largest Lyapunov exponent in the vicinity
of the integrable Ising limit.

In the present paper, we complement the findings of Ref. [25] in several
respects. Namely, we compute complete Lyapunov spectra for a few selected
spin lattices and show their dependence on the lattice size, and also present a
more extensive investigation of the lattice size dependence of the largest Lyapunov
exponent. Finally, we discuss the dependence of the largest Lyapunov exponent on the
Hamiltonian anisotropy with particular emphasis on the difference between bipartite
and nonbipartite lattices.

2. General formulation

2.1. Spin model

We consider periodically closed spin lattices with the nearest-neighbor (NN)
interaction Hamiltonian of the following kind:

H =

NN∑

i<j

(JxSixSjx + JySiySjy + JzSizSjz) , (1)

where (Six, Siy, Siz) ≡ Si are the three projections of the classical spin vector of
unit length on the ith lattice site (i.e. S2

i = 1), and Jx, Jy, Jz are the coupling
constants, which we also normalize by condition J2

x + J2
y + J2

z = 1. Below, we
often mention Ising, Heisenberg and “anti-Heisenberg” limits of the Hamiltonian
(1). The Ising Hamiltonian corresponds to Jx = Jy = 0, Jz = 1, Heisenberg
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Figure 1. Lattices investigated in this work. Bipartite: (L1) chain, (L2)
rectangular ladder, (L3) square lattice, (L4) bilayer of square lattices, (L5) cubic
lattice. Non-bipartite: (L6) triangular ladder, (L7) triangular lattice.

Hamiltonian to Jx = Jy = Jz = 1/
√
3, and, finally, anti-Heisenberg Hamiltonian

to Jx = Jy = −Jz = 1/
√
3. The total number of spins in the lattice is denoted as N .

The phase space of such a lattice has dimensionality 2N .
We consider seven lattices shown in Fig. 1 and labeled as (L1-L7). Lattices (L1-

L5) are bipartite, which means that they can be divided into two sublattices such that
all the interacting neighbors for a spin on one sublattice belong to the other sublattice.
Lattices (L6,L7) are nonbipartite.

The equations of motion associated with the Hamiltonian (1) can be obtained in
the Poisson-bracket formalism [33, 34, 35]: dSi,µ/dt = {H, Si,µ}, where the index
µ admits values 1, 2 or 3 representing the projections x, y, or z, respectively.
The primary Poisson brackets are: {Si,µ, Sj,ν} = δij

∑
κ ǫµνκSi,κ, where δij is the

Kronecker delta and ǫµνκ the Levi-Civita symbol. The evaluation of {H, Si,µ} involves
the following Poisson brackets: {Sj,νSk,σ, Si,µ} = {Sj,ν , Si,µ}Sk,σ + Sj,ν{Sk,σ, Si,µ}.
The resulting equations of motion are

Ṡi = Si × hi , (2)

where hi is the local field given by the expression

hi =
∑

j(i)

(JxSjxex + JySjyey + JzSjzez) . (3)

Here ex, ey and ez are the unit vectors along the respective directions, and j(i) implies
the summation of the nearest neighbors of the i-th lattice site.

In this work, we restrict ourselves to the Lyapunov instabilities on the zero energy
shell, which corresponds to infinite temperature in the microcanonical sense.

2.2. Analytical considerations

Since the dynamics of this system are fully time-reversible, positive and negative
Lyapunov exponents are expected to form conjugate pairs with equal absolute values.
In the general case of different Jx, Jy, and Jz, there should be only two zero Lyapunov
exponents, corresponding to the energy and the time shift directions. In the case
Jx = Jy 6= Jz , of which the anti-Heisenberg case is an example, the z-component of
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the total spin polarization becomes an integral of motion, and hence one more pair
of Lyapunov exponents should also become equal to zero. In the Heisenberg case,
Jx = Jy = Jz, all three components of the total spin polarization become integrals of
motion. However, these three integrals of motion are not dynamically independent,
because one of them can be obtained as the Poisson bracket of the two others. The
two independent integrals of motion thus imply two additional pairs of zero Lyapunov
exponents. In the Ising case, the z-component of each spin is an integral of motion.
Hence, the system is integrable and all Lyapunov exponents are equal to zero.

Now we discuss the connections between the Lyapunov spectra of different
anisotropic Hamiltonians. We first note that infinite-temperature Lyapunov spectra
are expected to be identical for the Hamiltonians with the coupling constants
(Jx, Jy, Jz) and (−Jx,−Jy,−Jz), because the zero-energy shells in the two cases
are identical, while the change of the sign of the coupling constants amounts to the
operation of time-reversal and flips the sign of the energy. We further note that, for
bipartite lattices, the infinite temperature Lyapunov spectra for the coupling constants
(Jx, Jy, Jz) and (−Jx,−Jy, Jz) should also be identical. In order to see this, one should
make the transformation Six → −Six and Siy → −Siy for one of the two sublattices
forming the bipartite lattice and then examine the resulting equations of motion.

The two observations made above also imply that, for a given bipartite lattice,
the Lyapunov spectra for the Heisenberg and the anti-Heisenberg Hamiltonians are
identical to each other, which means that, in the latter case, the Lyapunov spectrum
has three pairs of zero Lyapunov exponents instead of two expected for the generic case
of Jx = Jy 6= Jz. The extra pair of the zero exponents originates from the following
two (not independent) integrals of motion:

∑
i(−1)ξSix or

∑
i(−1)ξSiy, where ξ is the

index taking value 0 for one sublattice and 1 for the other. The same considerations
also imply that any Hamiltonian with Jx = −Jz, or equivalent, on a bipartite lattice
can be converted to the axially symmetric Hamiltonian with Jx = Jz. Therefore, the
original Hamiltonain has an extra pair of zero Lyapunov exponents corresponding to
the integral of motion

∑
i(−1)ξSiy.

Small spin clusters may have additional nontrivial integrals of motion. In partic-
ular, any 4-spin periodic chain with the general anisotropic Hamiltonian of form (1) is
fully integrable. This is because the first and third spins in this chain rotate in the same
local field [Jx(S2x + S4x), Jy(S2y + S4y), Jz(S2z + S4z)], while the second and the
fourth spins rotate in another local field [Jx(S1x + S3x), Jy(S1y + S3y), Jz(S1z + S3z)].
Therefore, there are two additional integrals of motion, namely: S1 · S3 and S2 · S4.
Finally, one can also check that (S1 +S3) · (S2 +S4) is also an integral of motion. As
a result, the number of integrals of motion (including energy) becomes 4, while the
dimensionality of the phase space is 8, i.e. the problem is fully integrable. In the case
of the isotropic Heisenberg Hamiltonian, a much larger variety of small spin clusters
with nontrivial integrals of motion were cataloged in Ref. [26].

2.3. Numerical simulations

The equations of motion were integrated using a fourth-order Runge-Kutta algorithm
with a time-step δt = 0.005. This is sufficiently small so that on the time scale of
our simulations, energy is conserved with the 6-digit accuracy. Simulations were run
for 20000 time units, which was sufficient for accurate convergence of the smaller
exponents.

The Lyapunov exponents were obtained by using a version of the standard
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reorthonormalization algorithm [4, 27, 28]. In order to obtain the first n largest
Lyapunov exponents, we numerically propagate a reference trajectory γ(t) and n
initially orthogonal perturbation vectors δγi(t). At every time step, we propagate
the perturbations using the linear tangent space map that is obtained by numerically
taking derivatives,

δγ(t+ δt) =
∂γ(δt)|γ(0)=γ

0

∂γ0

δγ(t) . (4)

After each time interval ∆t = 0.25, we hierarchically reorthogonalize the perturbation
vectors δγi(t) using the Gram-Schmidt procedure, and then renormalize their lengths
back to the initial values. The renormalization factors are recorded for the kth time
interval ∆t as αi(k). Finally, we compute the ith Lyapunov exponent using the formula

λi =
1

K∆t

∑K

k=1 lnαi(k), where K is the number of the renormalization time intervals.
As a test of the accuracy of our numerical routine, we have checked that the

Lyapunov exponents form conjugate pairs and that the number of zero Lyapunov
exponents is equal to the number expected from the symmetry of the Hamiltonian as
discussed in Section 2.2. We have also checked the symmetries between Heisenberg
and anti-Heisenberg Lyapunov spectra expected based on the arguments presented in
Section 2.2.

In order to obtain initial conditions at zero total energy, we first choose random
orientations for all spins. This produces a total energy close to zero, but with
fluctuations of the order of

√
N . Then, in order to arrive at zero total energy, we

evolve the dissipative equations of motion:

Ṡi = ±Si × (Si × hi) . (5)

Depending on the sign in front of the right-hand side, this increases or decreases the
total energy associated with the Hamiltonian (1). Once the zero value of the total
energy is reached, we additionally assure the randomness of the initial conditions on
the energy shell by performing 10N sequential rotations of random spins by random
angles around the directions of their respective local fields hi given by Eq.(3). These
rotations preserve the total energy.

3. Results and discussion

3.1. Lyapunov spectra

We have computed the full Lyapunov spectra for the linear chain (L1), cubic lattice
(L5) and triangular lattice (L7) with the Heisenberg Hamiltoninan, and also for
the triangular lattice (L7) with the anti-Heisenberg Hamiltonian. The results are
presented in Fig. 2. The spectra (i.e. the Lyapunov exponents as a function the
exponent’s index) are typically weakly convex, regardless of the lattice. In the case
of a cubic lattice with Heisenberg interaction, the spectrum is actually very close to
linear. As explained in Section 2.2, the Lyapunov spectra for the bipartite lattices (L1)
and (L5) with anti-Heisenberg Hamiltonian are identical to those already presented in
Fig. 2 for the Heisenberg Hamiltonian. The effect of the lattice size on the Lyapunov
spectrum for the linear chain with Heisenberg Hamiltonian is shown in Fig. 3. The
size dependence of the spectrum appears to be very weak for N > 4 and becomes
virtually unobservable for chains containing more than 32 spins.

Comparing the Lyapunov spectra of classical spins with the Lyapunov spectra
of other many-particle systems, we first note, that the spectra presented in Fig. 2 do
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Figure 2. (Color online) Lyapunov spectra for lattices (L1), (L5), and (L7)
with Heisenberg and anti-Heisenberg Hamiltonians. The number of spins in each
case is N = 256. Lyapunov exponents λi are ordered according their values and
plotted as a function of i: (a) Positive halves of the spectra. The inset shows
the same plots but with the vertical axis renormalized by the value of the largest
Lyapunov exponent λ1. (b) Magnified small-exponent parts of the spectra. Note:
lattices (L1) and (L5) have identical Lyapunov spectra for the Heisenberg and
the anti-Heisenberg interactions (see Section 2.2). In (b), the numerical error is
roughly the same as the size of the symbols.
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Figure 3. (Color online) The positive halves of the Lyapunov spectra for spin
chains (L1) of different lengths N with the Heisenberg Hamiltonian. Note: for
N = 4, all Lyapunov exponents are zero, due to the symmetries in the system
(see Section 2.2).

not exhibit an offset from zero for the smallest positive exponents. Such an offset
was observed in gases of particles [4] and high-dimensional billiards [29, 15] but not
in systems with sufficiently soft interactions [6]. The classical spin lattices obviously
belong to the latter group.

We further remark on the existence of the delocalized Lyapunov-Goldstone modes,
which were observed in dilute gases [4, 30, 31, 14] and in some other extended
systems [32]. If these modes exist in the spin systems, the projections on single spins
of the Lyapunov vectors corresponding to the smallest nonzero Lyapunov exponents
should exhibit a sinusoidal dependence on the positions of spins. In the present
work, we did not investigate the properties of the Lyapunov vectors systematically.
However, our several attempts to find the Lyapunov-Goldstone modes for the infinite
temperature energy shells did not produce any positive evidence: the projections of
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the Lyapunov vectors for all exponents were strongly localized on the lattice and
not sinusoidal. There is also no indication of a dependence of the smalles non-
vanishing exponent on the system length, as is characteristic for the Lyapunov-
Goldstone modes. The Lyapunov-Goldstone modes may still exist in classical spin
systems at low temperatures but this is a subject beyond the scope of the present
paper.

3.2. Largest Lyapunov exponents: finite size effects

Accurate numerical calculations of full Lyapunov spectra are very demanding, because
the computational cost grows as N2. For this reason, the lattices investigated in
the preceding subsection were relatively small. In this subsection, we focus only on
the largest Lyapunov exponents, λ1. The cost of computing λ1 grows only as N ,
which allows us to investigate much larger lattices and a much greater variety of
Hamiltonians. An extensive investigation of this kind was already reported by us in
Ref. [25]. In the present and the next subsections we present some results and analysis
that were not included in Ref. [25].

In this subsection, we investigate the dependence of λ1 on the lattice size for all
seven lattices shown in Fig. 1 with Heisenberg and the anti-Heisenberg Hamiltonians.
The results are shown in Fig. 4. They indicate that, within our numerical accuracy, λ1

becomes size-independent for sufficiently large lattices. In particular, on the basis of
these results even slow logarithmic growth of λ1 with the lattice size can be excluded.

The saturation of λ1 with the lattice size can be explained on the basis of the
following consideration. The exponential growth of the perturbation vector δγ1 in
many-spin phase space with rate λ1 implies that the projection δγ1 on the subspace
of each individual spin {Six, Siy, Siz} should also, on average, grow exponentially with
the same rate. The instantaneous growth rate of the perturbations of the coordinates
of a given spin can be obtained from the linearized equations of motion, which, in turn
can be obtained from equations (2) and (3),

δṠi = δSi × hi + Si × δhi , (6)

δhi =
∑

j(i)

JxδSjxex + JyδSjyey + JzδSjzez . (7)

Here, δSi indicates a perturbation in the i-th spin, while δSix indicates a perturbation
in its xth component. From these equations, one can see that the instantaneous growth
rate is limited from above by the value on the order of the maximum value of the local
field max(|hi|) = n0 max(|Jx|, |Jy|, |Jz |), where n0 is the number of nearest neighbors
for each lattice site. Since this constraint does not depend on the lattice size, the
growth of the perturbation belonging to the largest Lyapunov exponent must saturate
as the lattice size increases. In principle, it might also be possible for the largest
Lyapunov exponent to oscillate with the lattice size, but in a system with exponential
decay of spatial correlation, this is extremely unlikely.

3.3. Largest Lyapunov exponents: dependence on the Hamiltonian anisotropy

In Ref. [25], we conducted a systematic survey of the dependence of λ1 on the
Hamiltonian anisotropy on the “interaction sphere” constrained by the condition
J2
x + J2

y + J2
z = 1. We have found that the principal parameter controlling this

dependence is Jmax ≡ max(|Jx|, |Jy|, |Jz|). In particular, this parameter quantifies the
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Figure 4. (Color online) The dependence of the largest Lyapunov exponent on
the number of spins N for each of the seven lattices indicated in the plot legent for
(a) Heisenberg coupling and (b) anti-Heisenberg coupling. For bipartite lattices,
the largest Lyapunov exponents are the same for Heisenberg and anti-Heisenberg
coupling (see Section 2.2). The largest Lyapunov exponents become constant for
sufficiently large systems.

approach to the integrable Ising case corresponding to Jmax = 1. The main plot of
Ref. [25] is reproduced in Fig. 5.

Here we focus on the difference between the anisotropy dependence of λ1 for
bipartite lattices (L1-L5) and nonbipartite lattices (L6, L7). As can be seen in Fig. 5,
the bipartite lattices (L1-L5) show a nearly universal dependence λ1(Jmax), which
scales only with the number of interacting neighbors. The small spread of the sampled
values of λ1 at a given value of Jmax indicates that λ1 depends only very little on the
ratio of the two coupling constants that have smaller absolute values. Our investigation
of the nonbipartite lattices (L6,L7) was, in fact, motivated by the impression that the
number of interacting neighbors alone determines the entire anisotropy dependence of
λ1. We wanted to compare λ1 for the lattices (L6) and (L3), where, in the both cases,
each site has four nearest neighbors, and for the lattices (L7) and (L5), each site has
six nearest neighbors.

We found, however, that, as seen in Fig. 5, the nonbipartite lattices (L6) and (L7)
exhibit a noticeable fork-like spread of λ1 as Jmax approaches 1/

√
3. The upper and the

lower tips of the fork correspond to the anti-Heisenberg and Heisenberg Hamiltonians,
respectively. In the anti-Heisenberg case, the value of λ1 is close to that of a bipartite
lattice with the same number of nearest neighbors. In the Heisenberg case, the value
of λ1 is closer to the bipartite lattice with one fewer nearest neighbor. This spread
indicates that the knowledge of Jmax alone is insufficient to determine λ1. The two-
dimensional anisotropy dependence behind this spread is shown in Fig. 6, where we
present it for lattices (L5) and (L7) in the form of the color density plots as a function
of Jx and Jy.

Less obvious from Fig. 5, is the fact that the significant majority of the sampled
values of λ1 for the lattices (L6) and (L7) agree very well with the dependence
λ1(Jmax) for the bipartite lattices (L3) and (L5), respectively. The comparison
between Figs. 6(a) and (b) clearly shows that the difference between lattices (L5) and
(L7) is only pronounced, when all three interaction constants have the same sign and
roughly the same value—or, in other words, when they approach the Heisenberg limit.
This implies that λ1 for the anti-Heisenberg Hamiltonian has a more typical value than
for the Heisenberg Hamiltonian, and that the expected universality of λ1(Jmax) for the
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Each point represents one λ1 obtained numerically for a lattice indicated in the
plot legend with one randomly chosen set of values Jx, Jy and Jz as described in
the text.
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Figure 6. (Color online) Largest Lyapunov exponent as a function of the coupling

constants Jx and Jy. The third coupling constant is Jz =
√

1− J2
x − J2

y . Plots

(a) and (b) represent, respectively, the numerically generated results for lattices
(L5) and (L7). Both lattices have six nearest neighbors, but lattice (L5) is
bipartite, while lattice (L7) is not. As explained in Section 2.2, the plots for

Jz = −

√

1− J2
x − J2

y can be obtained from the plots shown in this figure by

reversing the signs of Jx and Jy.

same number of nearest neighbors still roughly holds even for nonbipartite lattices. It
thus appears that the conservation of the total spin, i.e.

∑
i Si, in the Heisenberg case

leads to the reduction of the effective number of the nearest neighbors by roughly one,
as far as the value of λ1 is concerned.

We suspect that the situation here is similar to the origin of the frustrated
low-temperature magnetism for the Heisenberg model on nonbipartite lattices. The
interaction energy for a spin pair is minimal when the two spins are antiparallel
to each other, but, on a nonbipartite lattice, such an antiparallel configuration
cannot simultaneously exist for all pairs of interacting spins. Hence the ground state
of a nonbipartite lattice is frustrated. In the case of the Lyapunov instabilities,
the conservation of the total spin polarization implies that the perturbation vector
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δγ1 ≡ {δSi} corresponding to the largest Lyapunov exponent does not grow along
the direction of the total spin polarization, i.e

∑
i δSi(t) =

∑
i δSi(0). At the same

time, |δSi(t)| grows, on average, exponentially, which means that, for t ≫ 1/λ1,
|δSi(t)| ≫ |δSi(0)|. This, in turn, implies that, in the leading order,

∑
i δSi(t) ≈ 0.

As a result, when a given projection δSi(t) grows, this growth needs to be compensated
by the growth of δSj(t) for other spins in the opposite direction. However, since the
interaction is local, these “other spins” can only be the nearest neighbors. Achieving
the maximum growth of the perturbation, and hence the largest value of the Lyapunov
exponent presumably requires that the perturbation vector δγ1 maximizes the anti-
alignment of δSi(t) for the adjacent sites. For the bipartite lattices, this anti-alignment
can, in principle, be made perfect, but for the nonbipartite lattices this is impossible.
Such an explanation is consistent with the fact that λ1 for lattices (L6,L7) in the
Heisenberg limit is smaller than in the anti-Heisenberg limit. It seems also to be
connected to the fact that the above reduction approximately leads to the value of λ1

for a bipartite lattice with roughly one fewer nearest neighbor per site.
We finally remark that the overall small spread of values of λ1 for bipartite

lattices at a given value of Jmax is related to the symmetries described in
Section 2.2, which imply that the Lyapunov exponents are identical for eight
combinations of the coupling constants characterized by the same value of Jmax,
namely: (Jx, Jy, Jz), (−Jx,−Jy, Jz), (−Jx, Jy,−Jz), (Jx,−Jy,−Jz), (−Jx,−Jy,−Jz),
(−Jx, Jy, Jz), (Jx,−Jy, Jz), (Jx, Jy,−Jz). The values of λ1 cannot change much
between these eight points.

4. Summary and conclusions

We have investigated numerically the Lyapunov spectra of systems of many classical
spins for a variety of lattices and coupling constants at infinite temperature. The
possibility of varying the coupling constants, from the highly symmetric isotropic
Heisenberg model, through partially symmetric couplings such as the anti-Heisenberg
model, to the completely anisotropic integrable case, makes these systems particularly
interesting. We have presented: (i) calculations of the Lyapunov spectra for selected
lattices of interacting classical spins; (ii) investigations of the lattice-size dependence of
the Lyapunov spectra; (iii) investigations the largest Lyapunov exponents for a broader
group of coupling constants, lattices and large lattice sizes; and (iv) discussion of
the difference between the largest Lyapunov exponents for bipartite and nonbipartite
lattices. The computed Lyapunov spectra were found to be weakly convex. We have
observed no finite offset of the smallest positive exponents, and, to the extent that we
have searched, we have not encountered any evidence of Lyapunov-Goldstone modes.
Both the largest Lyapunov exponents and the whole Lyapunov spectra were found to
become independent of the lattice sizes for sufficiently large lattices. We have given
an analytical argument explaining this finding. In addition, we have found that the
largest Lyapunov exponents for bipartite and nonbipartite lattices depend differently
on the anisotropy of the coupling. This is due to the special symmetry of the bipartite
lattices with respect to the sign change of the two out of three coupling constants.
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