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a b s t r a c t

In the study of chaotic behaviour of systems of many hard spheres, Lyapunov exponents of small absolute
values exhibit interesting characteristics leading to speculations about connections to non-equilibrium
statistical mechanics. Analytical approaches to these exponents so far can be divided into two groups,
macroscopically oriented approaches, using kinetic theory or hydrodynamics, and more microscopically
oriented random-matrix approaches in quasi-one-dimensional systems. In this paper, I present an ap-
proach using random matrices and weak-disorder expansion in an arbitrary number of dimensions.
Correlations between subsequent collisions of a particle are taken into account. It is shown that the results
are identical to those of a previous approach based on an extended Enskog equation. I conclude that each
approach has its merits, and provides different insights into the approximations made, which include the
Stoßzahlansatz, the continuum limit, and the long wavelength approximation. The comparison also gives
insight into possible connections between Lyapunov exponents and fluctuations.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, investigations into the connections between
the theory of dynamical systems and non-equilibrium statistical
mechanics have yielded many interesting and important results.
Gallavotti and Cohen [1,2], for instance, conjectured that many-
particle systems as studied by statistical mechanics will generally
be strongly chaotic. This has prompted a great deal of interest in the
connections between chaos on the one hand and the decay to equi-
librium and transport coefficients on the other (see for instance
Ref. [3]). A central role in the study of chaos and related proper-
ties is played by the Lyapunov exponents,which describe the expo-
nential divergence or convergence of nearby trajectories in phase
space.
Some of this interest has been directed towards the Lyapunov

exponents of the propotype system of many hard spheres. Several
analytical calculations of, amongother things, the largest Lyapunov
exponent and the sum of all positive Lyapunov exponents have
been performed [4–9]. Lyapunov exponents of many-particle sys-
tems have also been evaluated numerically inmolecular-dynamics
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simulations (see, for instance Ref. [10–12]). Because of their unex-
pected behaviour, in particular the Lyapunov exponents of small
but nonzero absolute value have received attention. A step struc-
ture occurs in the Lyapunov spectrum near zero whenever the sys-
tem is large enough compared to the mean free path, as was first
noted by Posch and Hirschl [13] and later also found in other sys-
tems (see, for example, Refs. [11,14]). These Lyapunov exponents
differ from the exponents of larger absolute value, in the sense
that all particles contribute to them, much like in the case of the
zero Lyapunov exponents, and the correspondingmodes appear to
be, on average and to first approximation, linear combinations of
these zeromodeswith a sinusoidal modulation in the position. Ini-
tially, it was hoped that describing the Lyapunov modes through a
macroscopically oriented approach such as hydrodynamics or an
Enskog equation might provide insight into possible connections
between chaos and transport. In Ref. [7], it has been shown that
the small exponents can in fact be viewed to belong to Goldstone
modes and that the behaviour found in simulations [13] can be un-
derstood from this. A set of equations was derived for these expo-
nents by the use of an extended Enskog equation and values for
the exponents were obtained. Other attempts to understand these
exponents have been based on hydrodynamic equations [15], and,
although limited to quasi-one-dimensional systems, random ma-
trices along with approximations of weak disorder [16–18].
In view of the two distinct approaches to the Goldstone modes,

through randommatrices on the one hand and through the Enskog
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equation on the other, it is of interest to investigatewhether the re-
sults of Ref. [7] can also be derived using techniques from random-
matrix theory. In this paper, instead of starting from the Enskog
equation, I make use of random matrices and the weak-disorder
expansion. Unlike the previous random-matrix approaches men-
tioned above, the present derivation is not limited to quasi-one-
dimensional systems. The approximations needed to arrive at
quantitative results can be studied more carefully in some cases,
and are similar to those used in the derivation of Ref. [7]. By com-
paring the Enskog and random-matrix approaches, one gains in-
sight into the approximations made in both approaches and the
associated inaccuracies. Of special interest are the consequences of
the thermodynamic limit, since finite-size effects in the Lyapunov
exponentsmay be related to fluctuations and decay of correlations.
This paper is organised as follows. In Section 2, Lyapunov ex-

ponents are briefly introduced as well as the dynamics in tangent
space of freely moving hard spheres in tangent space. Next, in Sec-
tion 3, a summary is given of the Goldstone modes and the cal-
culation of Ref. [7] by the use of an extended Enskog equation. In
Sections 4–6, it is explained how the results found from the ex-
tended Enskog equation can also be derived through the use of
random matrices. The approaches are compared in Section 7, and
the approximations needed are discussed. Possible corrections are
considered and it is pointed out how these may lead to insight in
the connections between non-equilibrium behaviour and chaotic
properties.

2. Lyapunov exponents and the dynamics in tangent space

Consider a d-dimensional system of N particles moving in a
2dN-dimensional phase space Γ . At time t = 0, the system is
assumed to be in an initial point γ0 in this phase space, fromwhich
it evolves with time according to γ(γ0, t). If the initial conditions
are perturbed infinitesimally by δγ0, the system evolves along
an infinitesimally different path γ (γ0, t) + δγ (γ0, t), where δγ
denotes a coordinate in the tangent space δΓ , and δγ (γ0, 0) =
δγ0. The evolution of a vector in the tangent space is described by

δγ(γ0, t) = Mγ0(t) · δγ0, (1)

whereMγ0(t) is a 2dN-dimensional matrix defined by

Mγ0(t) =
dγ(γ0, t)
dγ0

. (2)

The Lyapunov exponents are the possible average asymptotic
growth rates of infinitesimal perturbations δγi(γ , t) associated
with the eigenvalues µi(t) ofMγ0(t), i.e.,

λi = lim
t→∞

1
t
(ln |µi(t)| + i argµi(t)) . (3)

If the system is ergodic, it will eventually come arbitrarily close
to any point in phase space for all initial conditions except for a
set of measure zero. The Lyapunov exponents are thus the same
for almost all initial conditions. In the literature, one also finds the
Lyapunov exponents defined with reference to the eigenvalues of
[Mγ0(t)

Ď
·Mγ0(t)]

1
2 , in which case they are real.

The symmetries of the dynamics of the system generate vectors
in tangent space which do not grow or shrink exponentially and
therefore have Lyapunov exponents equal to zero. For a system of
hard spheres under periodic boundary conditions, these symme-
tries and their corresponding zeromodes are uniform translations,
Galilei transformations, time translations, and velocity scaling.
We now consider a gas of identical hard spheres of diameter

a and mass m in d dimensions in the absence of external fields.
As there are no internal degrees of freedom, the phase space may
be represented by the positions ri and velocities vi of all particles,
enumerated by i, and similarly the tangent space by infinitesimal
deviations δri and δvi. The evolution of the system in phase space
Fig. 1. Geometry of a collision of two particles i and j of diameter a, in relative
position rij = ri−rj andwith the relative velocity vij = vi−vj . The collision normal
σ̂ is the unit vector pointing from the centre of particle j to the centre of particle
i. The circle drawn represents the locus of closest approach. Coordinates before
the collision are marked with a prime. The dashed lines indicate an infinitesimally
displaced path.

consists of a sequence of free flights interrupted by collisions.
During the free flights, the particles do not interact and their
positions change linearly with the velocities; similarly, δr changes
linearly with δv. For rigid spheres the collisions are instantaneous.
At the moment of the collision, momentum is exchanged between
the twoparticles involved along the collisionnormal σ̂ = (ri−rj)/a
at impact, as shown in Fig. 1. At the instant of the collision, none of
the other particles are assumed to interact.
FromEq. (2) and thephase space dynamics, the dynamics in tan-

gent space can be derived [4,19]. During the free flight between the
instant of a collision tz (z being thenumber of the collision in the se-
quence) and t , there is no interaction between the particles and the
components of the tangent-space vector transform according to(
δri
δvi

)
t
= Z(t − tz) ·

(
δri
δvi

)
tz

, (4)

Z(t − tz) =
(
I (t − tz)I
0 I

)
, (5)

in which I is the d× d identity matrix.
As shown in Fig. 1, infinitesimal differences in the positions and

velocities of the particles lead to infinitesimal changes in the colli-
sion normal and collision time. This, in turn, leads to infinitesimal
changes in both positions and velocities right after the collision.
Throughout the paper, primes denote coordinates in phase space
and tangent phase space just before a collision while non-primed
quantities refer to coordinates just after the collision. For colliding
particles i and j, one findsδriδrjδvi
δvj

 = (L+ I) ·

δr
′

i
δr′j
δv′i
δv′j



=

I− S S 0 0
S I− S 0 0
−Q Q I− S S
Q −Q S I− S

 ·
δr

′

i
δr′j
δv′i
δv′j

 , (6)

where I and I are the 4d× 4d and d× d identity matrices, respec-
tively, andL is the 4d× 4d collision matrix, which can be written
in terms of d×dmatricesS andQ specifying the collision dynamics
in tangent space (see, for instance, Refs. [4,7]).
Let Z(t) be the 2dN × 2dN matrix which performs the single-

particle transformations Z(t) for all particles during free flight
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according to Eq. (5). Let Lz be the 2dN × 2dN matrix performing
the transformations associated with collision number z of two
particles at time tz , as written in Eq. (6), while leaving the
other particles unaffected. Mγ0(t) in Eq. (1) then is a product of
these matrices for the sequence of collisions 1, 2, . . . , z occurring
between time t1 = 0 and t and the free flights in between the
collisions. Its specific form reads

Mγ0(t) = Z(t − tz) · Lz · Z(tz − tz−1) · Lz−1 · · · Z(t2 − t1) · L1. (7)

In principle, Mγ0(t) in Eq. (1) can now be derived for finite times
for any finite system with given initial conditions, after which the
eigenvalues ofMγ0(t) can be determined.

3. Goldstone modes and the extended Enskog equation

At this point, in order to be able to compare the random-matrix
approach described in this paper to our previous analytical results
obtained by using an extended Enskog equation [7], it is useful to
review the derivation of the extended Enskog equation and the
approximations made therein.
In Ref. [7], it was shown that the sinusoidal modes found in the

simulations may be interpreted as being Goldstone modes. These
occur in systems with a continuous symmetry, such as the sym-
metries associatedwith the zeromodes. Translation invariance, for
instance, causes the evolution operator to commutewith the trans-
lation operator. As a result, the two operators have a set of common
eigenfunctions, which are sinusoidal perturbations of the contin-
uous symmetry that grow or shrink slowly with time. For these
modes to stand out among the continuum of other Lyapunov ex-
ponents, their wavelength must be large compared to the typical
length scale of the mean free path. That is,

v̄k� ν̄, (8)

where v̄ is the average absolute value of the velocity of the parti-
cles, and ν̄ is the average single-particle collision frequency. The
modes found in simulations are linear combinations of the Gold-
stone modes for wave vectors of equal size belonging to left- and
right-moving waves. The qualitative behaviour seen in the simula-
tions [13] can be understood entirely from this. Also, the inconsis-
tencies in the propagation velocity and amplitude noted in Ref. [20]
can be completely understood from the behaviour of linear combi-
nations of left- and right-moving Goldstone modes.
Themode corresponding to a particular Lyapunov exponent de-

pends, in general, on the initial conditions of all particles in a way
that is far too complicated to allow exact specification. To find the
exponents from analytical calculations, therefore, one has to resort
to a statistical approximation. In our earlier paper [7], this was ac-
complished by making assumptions similar to the Stoßzahlansatz
in the Boltzmann equation. The system is described not as a large
number of separate particles, but rather by a distribution function
of position, velocity, etc., which can be used to obtain the average
behaviour. The pre-collision pair distribution functions are approx-
imated by a product of independent one-particle distributions,
which is valid at low densities. In the Boltzmann equation, in addi-
tion to the Stoßzahlansatz, the two one-particle distributions are
evaluated at the same position r. The Enskog equation is a heuris-
tic generalisation of this, in which the pair distribution is approx-
imated by the product of two one-particle distribution functions
evaluated at the actual positions of the two particles, multiplied by
a factor χE(n) equal to the equilibrium pair correlation function at
contact evaluated as a function of the density n at that point. More
details on the Boltzmann equation and the Enskog theory of dense
gases relevant to this study may be found in Refs. [21,22].
To describe the dynamics in tangent space, we have previously

derived [7] a generalised Enskog equation for the single-particle
distribution function f (r, v, δr, δv, t) for the coordinates of a
particle (r, v) and the tangent space vectors δr and δv. The latter
are described by a single-particle distribution function which, in
the thermodynamic limit, depends smoothly on position, velocity,
and time, just like the velocity distribution in the ordinary Enskog
equation. If in addition the distribution functions of the tangent
space vectors of two particles about to collide are assumed to
factorise in a way similar to the distribution of their velocities,
one ends up with a generalised Enskog equation that includes the
tangent space variables. If the tangent space variables δr and δv
are integrated over, this equation reduces to the standard Enskog
equation.
Because δr and δv are infinitesimal, the dynamics in tan-

gent space are linear in these quantities. Therefore, from the ex-
tended Enskog equation, one may obtain closed linear equations
for the time evolution of the average first moments δr(r, v, t) and
δv(r, v, t), which are the averages of the tangent space vectors δri
and δvi of the particles in a small region around position r and ve-
locity v at time t . The result is a set of linear equations for the av-
erages [7], reading

∂

∂t
δr(r, v, t) = −v ·

∂

∂r
δr(r, v, t)+ δv(r, v, t)+ CSδr(r, v, t), (9)

∂

∂t
δv(r, v, t) = −v ·

∂

∂r
δv(r, v, t)

+CSδv(r, v, t)+ CQδr(r, v, t). (10)

The linear functional collision operators CS and CQ are associated
with the matrices S and Q, and specified by the collision integrals
for a particle with outgoing velocity v over all outgoing velocities
u for the other particle,

CS δq(r, v, t) =
∫

σ̂·(v−u)≤0
du dσ̂ χE(n)nad−1 | σ̂ · (v− u)|

×φM(u)
{
δq(r, v′, t)+ S ·

[
δq(r+ aσ̂,u′, t)

− δq(r, v′, t)
]
− δq(r, v, t)

}
, (11)

CQ δr(r, v, t) =
∫

σ̂·(v−u)≤0
du dσ̂ χE(n)nad−1 | σ̂ · (v− u)|

×φM(u)Q ·
[
δr(r+ aσ̂,u′, t)− δr(r, v′, t)

]
, (12)

where δq(r, v, t) denotes either δr(r, v, t) or δv(r, v, t). As in Sec-
tion 2 and Fig. 1, the primes denote the variables before the col-
lision with collision normal σ̂ and outgoing velocities v for one
particle and u for the other, while φM(u) is the Maxwell distribu-
tion.
The equations for the first moments can be solved by using spa-

tial Fourier transforms. The solutions have the form

δqi = fk(vi) exp(ik · ri + λt), (13)

where k is the wave vector. For the Lyapunov exponents there is
reasonable quantitative correspondence to the results of simula-
tions [7]. Surprisingly, it turned out that the Stoßzahlansatz still
affects the leading order in the density [7,23].
The extended Enskog equation, the equation for the first mo-

ments, and its solutions are discussed in more detail in Ref. [7].

4. Products of random matrices and the weak-disorder expan-
sion

Because Eq. (7) contains a product of similar matrices, a more
natural approach to the problem of Lyapunov exponents in many-
particle systems may be to consider the tangent-space maps as
products of random matrices. Some assumptions regarding the
randomness of the generating dynamics must be made to replace
the matrices by a random ensemble, similarly to the assumptions
used in, for example, Refs. [6,24–26]. Thematrices in the ensemble
must be symplectic, because of the time-reversal symmetry of
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the dynamics, yet satisfy quite strong additional restrictions and
correlations between their elements. In the case of a generalmany-
particle system, it is not directly obvious how to deal with these
remaining correlations, as pointed out in Ref. [6].
Attempts to describe the Goldstone modes through random-

matrix theory have been made by Eckmann and Gat [16], and by
Taniguchi, Dettmann, andMorriss [17,18]. Refs. [16,18] considered
quasi-one-dimensional systems, while Ref. [17] considered peri-
odic orbits. In both cases, particles cannot move past each other,
and any particle collides only with its two neighbours. As a re-
sult, the calculations are very much simplified, and indeed fail to
produce quantitatively reliable results for fully two- and three-
dimensional systems. It should be noted in this context that for
the same reason quasi-one-dimensional systems do not satisfy
the Stoßzahlansatz, which does not hold if pairs of particles that
have already collided collide again. Additionally, these calculations
make use of approximations that are quite similar to the weak-
disorder expansion, while the applicability of the weak-disorder
expansion is uncertain. In the present section, I will indicate how
the requirements of the weak-disorder expansion correspond to
the assumptions needed to derive the extended Enskog equation
and the equations for the first moments in the tangent space of a
single particle, Eqs. (9) and (10).
For the problem under consideration thematrix productMγ0(t)

is given in Eq. (7). The matrices can be taken together in pairs
corresponding to a collision j, Lj, and following free flight, Z(tj+1 −
tj), to produce a product of correlated sparse randommatrices

Mγ0(tz+1) = Bz · Bz−1 · · · · · B1, (14)

Bj = Z(tj+1 − tj) · Lj. (15)

After a collision, following a velocity-dependent free-flight time,
each particle will be involved in another collision, with the outgo-
ing velocity of the previous collision as the new incoming velocity.
The matrices describing such collisions are correlated.
In the next two paragraphs, the weak-disorder expansion is

introduced, along with the conditions that must be met. In the
remainder of the section, it is shown how these requirements can
bemet for the product in Eq. (14) and how the Lyapunov exponents
can be derived.
In preparation for this, let us consider a quite general product

of z matrices of the form

M = Az · Az−1 · · · · · A1, (16)

Aj = Ā+ εXj, (17)

in which ε is a small perturbation parameter and Ā is the average
matrix, assumed to be diagonalisable. The matrix M thus expands
to

M = Āz + ε
∑
j

Āz−j · Xj · Ā
j−1
+ · · · . (18)

The terms of higher orders in ε are not necessarily smaller than
the first-order terms, because the number of terms grows faster
than the inverse of their size for z → ∞. However, if the Xi are
independent of one another this problem disappears and the sum
converges [27,28].
Let Xj be independent and identically distributed, while every

element has zero average. Derrida,Mercheri, and Pichard [29] have
derived that the growth rates λi of the eigenvalues of the product
can to first order in ε be expressed in the eigenvalues κi of the
average matrix Ā, provided these eigenvalues exist and are non-
degenerate. More specifically,

λi = ln κi + ε2
(
(ai · X · ai)2

2κ2i
−

i∑
j=1

(ai · X · aj) (aj · X · ai)
κiκj

)

+ ε3

(
i∑

j,l=1

(ai · X · aj) (aj · X · al) (al · X · ai)
κiκjκl

−

i∑
j=1

(ai · X · aj) (aj · X · ai) (ai · X · ai)
κjκ

2
i

+
(ai · X · ai)3

3κ3i

)
+ · · · . (19)

Here, ai is the eigenvector of Ā belonging to the eigenvalue κi.
This theorem was later extended to the degenerate case by Zanon
and Derrida [28]. In the following sections, it will be shown
that the eigenvalues of A in the present problem can be chosen
arbitrarily, to be distinct, but approaching unity, so as to simplify
the derivation. Formore details on randommatrices and theweak-
disorder expansion, see Crisanti, Paladin, and Vulpiani [27].
In order to apply the weak-disorder expansion to the problem

under consideration, the matrix product Mγ0(t) in Eq. (14) must
first be rewritten into the formof Eq. (16), i.e., in such away that the
matrices become independent and that an expansion parameter ε
as introduced in Eq. (17) exists.
Instead of calculating the spectrum of Lyapunov exponents of

the original productMγ0(t), the spectrum of a very similar product
will therefore be considered, namely

O−1z ·Mγ0(t) · O0 = O−1z · Bz · Oz−1 · O
−1
z−1 · Bz−1 · · · B1 · O0, (20)

whereOjmaydepend on the entire phase space andmay be chosen
in any suitable way. Without loss of generality, O0, may be taken
to be unitary, and the other Oj are chosen in such a way that the
2dN × 2dN matrices Aj, defined by

Aj = O−1j · Bj · Oj−1, (21)

satisfy the requirements of the weak-disorder expansion. The ma-
trices Oj are transformations to another orthogonal basis just
before and back after every collision and free flight, while the ma-
trices Aj are the tangent space maps in these new bases. The basis
vectors make up the columns of the matrix Oj.
In Section 5, I derive an equation for the components of these

vectors, and consequently for the elements ofOj, from the require-
ments of theweak-disorder expansion. These basis vectorsmayde-
pend on the position of the system in phase space, i.e., the positions
and velocities of the particles. The matricesOj need not be unitary.
In principle, it could be necessary to use complicated nonlinear
transformations to satisfy the requirements of the weak-disorder
expansion. Any kind of invertible transformation might do, as long
as the transformation of a product of two subsequent tangent space
maps is equal to the product of the transformedmaps. A priori, the
existence of suitable linear transformations Oj is not guaranteed.
Here, however, I restrict myself to linear transformations, because
they suffice for the present purpose.
The Lyapunov spectrum of the product O−1z · Mγ0(t) · O0,

Eq. (20), can then be related to the Lyapunov spectrum of the orig-
inal productMγ0(t). As Oj is a transformation from one orthogonal
basis to another, it can be written as a product of a diagonal matrix
Dj and a unitary matrix Uj,

Oj = Uj · Dj. (22)

The first diagonal matrix D0 is the 2dN × 2dN identity matrix. The
Lyapunov spectrum of D−1z · U

−1
z · Mγ0(t) · O0 can be determined

using theOsledec theorem,which states that the growth of an arbi-
trary i dimensional volume is dominated by the i largest Lyapunov
exponents. The unitary transformations U−1z and O0 do not affect
the volume mapped by the product, and so the growth of a vol-
ume mapped by U−1z · Mγ0(t) · O0 is the same as that of a volume
mapped byMγ0(t). Letωi be the i-th largest eigenvalue of D

−1
z . One

can write D−1z as a product of z diagonal matrices and apply the
Osledec theorem to this product as well. The Lyapunov exponents
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Fig. 2. Schematic representation of the collisions and free flights of particle p and
the particles it interactswith at collisions i, j, k, and, indirectly, l, at times ti , tj , tk , and
tl , along with the corresponding tangent space maps and their products. Because of
the Stoßzahlansatz, the only remaining correlation between random matrices in
the product is due to the information carried by particles between collisions. If the
matrices Ai, . . . ,Al−1 are constructed in such a way as to make Pi,p independent of
Pj,p and Pj,q , then this correlation is eliminated.

of this product are equal to ln(ωi)/z. By starting from the volume
mapped by U−1z ·Mγ0(t) · O0 and applying the Osledec theorem to
its map by Dz , one obtains that the growth rate of an i dimensional
volume mapped by the entire product in Eq. (20), is equal to the
sum of the largest i Lyapunov exponents of each of the two prod-
ucts Mγ0(t) and D−1z . The Lyapunov exponents λ̃i of the complete
product in Eq. (20) can therefore be written as

λ̃i = λi +
lnωi
z
. (23)

5. Basis vectors for the transformations to independent matri-
ces

In the previous section, a framework was set up which allows
one to implement the weak-disorder expansion. In order to
materialise this, time-dependent matrices Oj must be constructed
that make the random matrices Aj, Eq. (21), occurring in the
product Eq. (20) independent. The columns of Oj are made up
of a time-dependent set of 2dN-dimensional basis vectors ox(t),
enumerated by xwhich runs from 1 to 2dN . It should be noted that
it is convenient to choose vectors ox(t)which are orthogonal.
In the many-particle system under consideration, the correla-

tion between the matrices derives from the fact that information
is carried between collisions through the position and velocity of
a particle. The basis vectors in which to express the tangent space
maps Aj must be chosen in such a way that this correlation is re-
moved. In this section, this is achieved by focussing on the subse-
quent collisions of one particle. Most correlation with collisions of
other particles can be removed by using the Stoßzahlansatz. The
remaining correlation, which involves only a small number of par-
ticles can be used to determine a set of equations for ox(t).
Let Pi,p be the product of matrix Aj−1 · · · · · Ai+1 · Ai which

describes the dynamics in tangent space of all the particles at
collision i involving particle p and during the subsequent free flight
of particle p until it collides with particle q in collision j (see Fig. 2).
Using Eq. (21), the x, y element of Pi,p can be written in terms of
the basis vectors ox(t−j ) and oy(t

−

i ) as
(Pi,p)xy =
ox(t−j )
|ox(t−j )|2

· Bj−1 · · · Bi · oy(t−i ), (24)

where the superscript in t−j etc. denotes a time an infinitesimally
small interval before the collision at that time. Because of the
Stoßzahlansatz, any collisions of particles with no common history
with p or q are not correlated with collisions of p or q. As our
purpose here is to remove all correlation, and these collisions are
already uncorrelated, they do not need to be considered explicitly.
In order to remove the remaining correlation, and for thematri-

cesAj to become fully independent and to satisfy the requirements
of the weak-disorder expansion, one must consider the remaining
correlation, which is due to correlations between particles which
share a common history. Though there will be correlation between
collisions of such particles with other particles, the corresponding
tangent space maps Aj should be independent. For this, it is suffi-
cient that the product Pi,p be independent of both Pj,p and Pj,q. This
ensures that the matrix products are independent of the history of
a particle before its most recent collision, and consequently that
collisions of any other particles which share history with p and q
can be ignored. The component of ox(t) belonging to a specific par-
ticle should not depend on anything but its history since its most
recent collision. Just before collision j, therefore, only the recent
history of particle p can lead to correlation. Consequently, only con-
tributions to (Pi,p)xy from the projections onto the tangent space of
particle p can lead to correlations with Pj,p and Pj,q, i.e., we may
restrict ourselves to the term(

Pp · ox(t−j )
|ox(t−j )|2

)
· Pp · Bj−1 · · · Bi · oy(t−i ), (25)

where Pp denotes the projection of the 2dN-dimensional tangent
space onto the 2d-dimensional tangent space of particle p. Further-
more, we may write

ox(t) =
(
δr(x)1 (r1, v1, t), δv

(x)
1 (r1, v1, t) ,

. . . , δr(x)N (rN , vN , t), δv
(x)
N (rN , vN , t)

)
, (26)

where δr(x)1 (r, v, t) · · · δv
(x)
N (r, v, t) are d-dimensional vector func-

tions which are different for every x. As the particles are identi-
cal, the functions δr(x)1 (r, v, t), δr

(x)
2 (r, v, t), etc. are the same for all

particles, as are δv(x)1 (r, v, t), δv
(x)
2 (r, v, t), etc., so that the indices

can be dropped and they can simply be written as δr(x)(r, v, t) and
δv(x)(r, v, t).
As the only information carried by particle p between two

collisions is its position rp and velocity vp, the product Pi,p is
independent of Pj,p and Pj,q if Pi,p is independent of the position
and the velocity of the particle p between the two collisions i and
j. To this end, the functions δr(x)(r, v, t) and δv(x)(r, v, t) must
be chosen in such a way that Pi,p becomes independent of rp
and vp. For this it is necessary that at least the average 〈Pi,p〉 is
independent of the velocity of particle p after collision i, where the
average 〈.〉 is calculated over all parameters, including the velocity
of all particles that particle p has collided with, but excluding the
position and velocity of particle p after collision i. If this condition is
met, averages of products of firstmoments of thematrices Pi,pwith
those of Pj,p and Pj,q behave as if the matrices are independent,

〈Pi,pPj,p〉 = 〈Pi,p〉〈Pj,p〉, (27)

〈Pi,pPj,q〉 = 〈Pi,p〉〈Pj,q〉. (28)

The condition of independent first moments is a necessary prereq-
uisite for the independence requirement of the weak-disorder ex-
pansion, if not necessarily sufficient. It is assumed here that the
remaining correlation can be removed by further refining themaps
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Oj [see Eq. (21)], if necessary through the use of nonlinearmaps. As
only the highermoments of thematriceswould be involved in this,
it will not produce extra contributions to the leading order in the
perturbation parameter in Eq. (19).
One must consider the relevant contribution to 〈Pi,p〉 from

particle p in Eq. (25), which is proportional to〈(
δr(x)(rp, vp, t−j ), δv

(x)(rp, vp, t−j )
)
· Pp · Bj−1 · · · Bi · oy(t−i )

〉
,(29)

where Pp denotes the projection of the 2dN-dimensional tangent
space onto the 2d-dimensional tangent space of particle p. The
functions δr(x)(rp, vp, t) and δv(x)(rp, vp, t) do not contain any of
the quantities which are averaged over. Therefore the quantity(
δr(x)(rp, vp, t−j ), δv

(x)(rp, vp, t−j )
)
· 〈Pp · Bj−1 · · · Bi · oy(t−i )〉 (30)

must be independent of rp and vp. If the average has the same func-
tional dependence (up to a strictly positive arbitrary prefactorD)
on the position and velocity of particle p just before collision i as
δr(x)(rp, vp, t−j ), then the inner product in Eq. (30) is equal to an ar-
bitrary constant times the norm of (δr(x)(rp, vp, t), δv(x)(rp, vp, t))
squared. In this case, Pi,p represented in the two bases sets just be-
fore collisions j and i is independent of the position and velocity of
particle p between the two collisions.
Consequently, one arrives at an eigenvalue-type equation for

the tangent-space basis vectors with a strictly positive, but other-
wise arbitrary, scalar prefactorD , which may be different for each
combination of basis vectors. The collision parameters must be av-
eraged out, and their distribution is the same as in Enskog theory.
Let δr(r, v, t) and δv(r, v, t) be shorthand for δr(x)(rp, vp, t) and
δv(x)(rp, vp, t), the eigenvalue equation reads(
δr(r, v, t)
δv(r, v, t)

)
= D

∫
σ̂·(v−u)≤0

du dσ̂ dτ exp[−τ ν̄(v)]

×χE(n)ad−1| σ̂ · (v− u)|φM(u)

×Z(τ ) ·

(
1 0 0 0
0 0 1 0

)
· (Lj + I)

×

 δr(r− τv, v′, t − τ)
δr(r− τv+ aσ̂,u′, t − τ)
δv(r− τv, v′, t − τ)

δv(r− τv+ aσ̂,u′, t − τ)

 , (31)

where the collision normal is σ̂, and the incoming velocities v′ and
u′ of two particles are mapped to the outgoing velocities v and u,
respectively. The 4d × 4d matrix Lj represents the collision dy-
namics at collision j as given in Eq. (6) and the 2d × 2d matrix
Z(τ ) defined in Eq. (5) describes the free-flight dynamics. The time
between the two collisions of the particle is denoted by τ . The
velocity-dependent average collision frequency is represented by
ν̄(v) = 1/τ̄ (v), where τ̄ (v) is the averagemean free time as a func-
tion of the particle velocity. The various solutions of Eq. (31) corre-
spond to different basis vectors ox(t), which should be orthogonal.
The strictly positive time-dependent prefactor D controls the

eigenvalues of Ā as well as the growth rate of the eigenvalues of
Dj in Eq. (22). In principle, it can be chosen in any arbitrary way,
as long as it is strictly positive, as any growth can be accounted
for either in the basis vectors or Ā. The choice ofD does not affect
the final result for the Lyapunov exponents, as can be seen from
Eq. (23). IfD is taken to be unity, Ā is equal to the identity matrix,
and the eigenvalues of Ā are all equal to unity. All growth will be
accounted for in the time-dependence of the functions δr(r, v, t)
and δv(r, v, t). The weak-disorder expansion, however, has only
been proven for non-degenerate systems and systemswith doubly
degenerate eigenvalues [28]. I therefore choose D differently for
every basis vector, so that the eigenvalues of Ā become distinct and
the weak-disorder expansion holds. Furthermore, D is chosen so
close to unity that terms proportional toD − 1 become negligible
compared to other terms. This greatly simplifies the calculation.
Let T be the operator

∫
∞

0 dτ ν̄(v) exp[−τ ν̄(v)]. By substituting
Eqs. (11) and (12) into Eq. (31), one finds

1
D
δr(r, v, t) = T {[τ̄ (v)CS + 1+ τ τ̄ (v)CQ] δr(v, r− τv, t − τ)

+ τ [τ̄ (v)CS + 1]δv(v, r− τv, t − τ)} , (32)
1
D
δv(r, v, t) = T {τ̄ (v)CQδr(v, r− τv, t − τ)

+ [τ̄ (v)CS + 1]δv(v, r− τv, t − τ)} . (33)

The operator T equals the unity operator when working on
functions that do not depend on τ , and therefore onemaymultiply
the left side of the equations by it. As both sides then contain the
same integral over τ , a change of variables may be performed,
namely r′ = r − τv, t ′ = t − τ . After renaming the variables the
equations become

1
D

Tδr(r+ τv, v, t + τ) = [τ̄ (v)CS + 1]δr(v, r, t)

+ Tτ τ̄ (v)[CQδr(v, r, t)+ (CS + 1)δv(v, r, t)], (34)
1
D

Tδv(r+ τv, v, t + τ) = τ(v)CQδr(v, r, t)

+ [τ(v)CS + 1]δv(v, r, t). (35)

In the continuum limit the mean free time and the mean free
path become small in comparison with the typical scales of the
solutions. The quantities δr(r−τv, v, t−τ) and δv(r−τv, v, t−τ)
can thus be expanded around δr(r, v, t) and δr(r, v, t), and all
terms of higher order in τ can be neglected. After substitution of
Eq. (35) into Eq. (34) and performing the integration over τ , one
finds
1
D

(
τ̄ (v)v ·

∂

∂r
+ τ̄ (v)

∂

∂t
+ 1

)
δr(r, v, t)

= [τ̄ (v)CS + 1]δr(v, r, t)+ τ̄ (v)δv(v, r, t), (36)
1
D

(
τ̄ (v)v ·

∂

∂r
+ τ̄ (v)

∂

∂t
+ 1

)
δv(r, v, t)

= τ̄ (v)CQδr(v, r, t)+ [τ̄ (v)CS + 1]δv(v, r, t). (37)

Rearranging the terms anddividing the equations by τ̄ (v), followed
by taking the limit ofD → 1, leads to two equations very similar
to Eqs. (9) and (10),

∂

∂t
δr(r, v, t) = −v ·

∂

∂r
δr(r, v, t)+ δv(r, v, t)+ CSδr(r, v, t)

+ (D − 1)
[(

CS +
1
τ̄ (v)

)
δr(r, v, t)+ δv(r, v, t)

]
, (38)

∂

∂t
δv(r, v, t) = −v ·

∂

∂r
δv(r, v, t)+ CSδv(r, v, t)+ CQδr(r, v, t)

+ (D − 1)
[
CQδr(r, v, t)+

(
CS +

1
τ̄ (v)

)
δv(r, v, t)

]
. (39)

As D has been chosen arbitrarily close to unity, and the other
terms are nonzero, the terms containing D − 1 are negligible.
We are then left with equations identical to Eqs. (9) and (10).
The latter were derived from the Enskog equation by using the
same approximations in a different order. The equations can be
Fourier transformed and have solutions of the form of Eq. (13).
The solutions give the components of the basis vectors that make
up Oi in Eq. (21). As the average of the transformed matrices, Ā,
is also arbitrarily close to unity, to leading order the Lyapunov
exponents are simply equal to the growth rates of the basis vectors,
the solutions of Eqs. (9) and (10).
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6. Perturbation parameter

The pursuit for independently distributed matrices Aj has
yielded the same equations as were found in Ref. [7]. However, in
order for Aj to fully satisfy the requirements of the weak-disorder
expansion, and thus for the Lyapunov exponents to equal the λ
found from Eqs. (9) and (10), Aj must be of the form of Eq. (17).
A small perturbation parameter ε must exist, i.e., the higher-order
corrections in Eq. (19) must be small compared to the leading
order.
The solutions to Eqs. (9) and (10), which are of the form given

by Eq. (13), describe the vectors that make up the columns of the
matrix Ob associated with a specific collision b at time tb and the
subsequent free flight. We may estimate the elements εXijb of the
corresponding disorder matrix by considering the inner product
of these basis vectors given by Eq. (13), with the tangent-space
collision matrix and free-flight matrix in between. Here i and j
determine not only the wave vectors, but also the zero mode
modulated by them. The contribution from particle l to the tangent
space vector at time tb can be written as [7]

δq(i)(rl, vl, tb) = [1q(i)(vl)] exp(iki · rl + λitb), (40)

1q(i)(vl) = ∆0q(i)(vl)+ O
(
v̄ki
ν̄N

)
, (41)

where∆0q(i) denotes a linear combination of the zero modes that
belongs to the mode of λi. Note that the components of ∆

(i)
0 q(vl)

are of order 1/N due to normalisation. If ki becomes large, then,
because of normalisation, the components are of order 1/N <
ki/N . Note that modes with different wave vectors ki decouple on
average after taking the continuum limit.
For all particles in the time interval1tb ∼ 1/(ν̄N) between this

collision b, and the next one of the entire system, b+1, the position
changes by a small amount vl1tb. More explicitly, the matrix Ab
related to any specific collision b and the directly following free
flight [see Eq. (20)] can be expressed as

(Ab)ij

=

N∑
l=1

∑
q=r,v
[Z(tb+1 − tb) · Lb · δq(i)(rl, vl, tb)] · δq(j)(r′l, v

′

l, tb)

N∑
l=1

∑
q=r,v

δq(j)(r′l, v
′

l, tb) · δq(j)(r
′

l, v
′

l, tb)

× exp[(−iki · v′l + λi)1tb], (42)

Out of the total of N particles, only two nearby particles are in-
volved in each collision. To leading order in v̄ki/(ν̄N), their per-
turbations are the zero modes, which map onto themselves under
collisions. All the other particles are unaffected by the collisionma-
trix. As a result, after the short time evolution after collision b the
modes aremapped exactly onto themselves, except for small terms
for each particle due to the free flight, and larger collision terms for
the two colliding particles.
The expressions in Eqs. (40) and (41) may be inserted into

Eq. (42) to estimate the various terms. Upon inserting the orthogo-
nality of the basis and subtracting Ā, which approaches unity, one
finds

εXijb = O
(
v̄ki
ν̄N

)
. (43)

One may substitute this result into Eq. (19) while considering that
the eigenvalues κi of the average tangent space evolution matrix Ā
are of order one. In this way, it is found that the higher-order terms
in the expansion are all of order (v̄ki)2/(ν̄2N).
In other words, the slowly growing and decaying modes couple

sufficiently weakly to the other modes if v̄k/ν̄ � 1. This is the
case if the modes vary slowly in space, i.e., if the wavelength is
smaller than the mean free path, as in Eq. (8). In this perturbation
expansion all the higher-order corrections in Eq. (19) are of
order (v̄k/ν̄)2, one order of v̄k/ν̄ smaller than the leading-order
term. The perturbation parameter needed for the weak-disorder
expansion is therefore v̄k/ν̄, andnot v̄k/(ν̄N), because of the size of
the disorder matrices. As the wavenumber k appears in the matrix
Ob, it appears in Ab, and can appear in the perturbation parameter.
Note that the perturbation expansion can only be used to calcu-

late the small Lyapunov exponents, when v̄k/ν̄ < 1. If k becomes
too large, the remaining terms in Eq. (19) may not converge.

7. Comparison and discussion

Exactly the same approximations are used in both the En-
skog approach (Section 3) and the random-matrix approach
(Sections 4–6), namely the continuum limit, the Stoßzahlansatz,
and the approximation of long wavelength, Eq. (8). The same re-
sults are found. However, the method for arriving at these results
is quite different, and the two approaches shed different light on
the approximations and their validity.
In the derivation of the extended Enskog equation using kinetic

theory, one starts with the approximations made in the standard
Boltzmann and Enskog equations, namely the Stoßzahlansatz and
the continuum limit, keeping in mind that the wavelength of the
modesmust be longer than themean free path. Next, the equations
are multiplied by the first moments and integrated.
In the random-matrix approach, only a very general assumption

of randomness is made at the beginning. Then weak disorder is
used, along with the approximation of long wavelength, followed
by the Stoßzahlansatz, which is needed to simplify the equations
for the basis. And only then the continuum is limit taken.
As to the Stoßzahlansatz, in the Enskog approach it is used

earlier, and the consequences of the Stoßzahlansatz are clearer.
In Ref. [7] we showed that this approximation may not be
sufficient for finding the Lyapunov exponents to leading order in
the density. From the kinetic-theory approach it is clear how to
add correction terms to the equations for ring collisions and other
similar trajectories. In the random-matrix approach this is not
so transparent, as the weak-disorder expansion theorem simply
requires independence of the matrices. It is not directly obvious
how to extend the theorem to products of correlated matrices, or
how to include ring collisions in the equation for the basis sets for
which the matrices become independent. An exploration of the
ring-collision terms within the framework of the kinetic-theory
approach was made in Ref. [23].
In the derivation of the generalised Enskog equation it is

assumed, because the tangent space is linear, that the behaviour
of the system can be described by the average behaviour of the
firstmoments of the tangent space vectors. This is equivalent to the
requirement that the averages of the first moments of the matrix
elements behave as if the matrices are independent. Although
an expansion in v̄k/ν̄ of the type written down in Eq. (19) was
not explicitly considered in the kinetic-theory approach, the same
requirements of long wavelength and the Stoßzahlansatz were
found to be needed. Clearly, the original assumption made when
deriving the generalised Enskog equation is not as trivial as it may
seem.
The continuum limit is taken at the very end in the random-

matrix approach. Because of this, it is muchmore transparent than
in the generalised Enskog equation how to add terms for finite-
size effects to Eqs. (9) and (10). In particular, the longitudinal and
transversemodes, and alsomodeswith different values of k, are not
perfectly orthogonal in systems with a finite number of particles.
Such nonorthogonality is directly related to fluctuations (in for
instance the energy density) and its decay is related to the decay of
fluctuations and correlation of position, energy, and momentum.
The average fluctuations of the inner products between modes
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with different wave numbers are zero, and therefore finite-size
effects cannot contribute to the Lyapunov exponents to the leading
order in k. However, the relative size of these fluctuations is of
order 1/

√
N and the total number of wave vectors is of order N .

There could be contributions to the higher-order terms on the right
side of Eq. (19), which are of order k2/N , leading to corrections to
the Lyapunov exponents of order k2.

8. Conclusions

The Lyapunov exponents close to zero can be related to Gold-
stone modes. In this paper, I have shown that the equations for
the small positive Lyapunov exponents found in Ref. [7] by using
Enskog theory can be derived from random matrices by use of the
weak-disorder expansion. Precisely the same approximations are
necessary in both approaches, namely the Stoßzahlansatz, the con-
tinuum limit, and the approximation of long wavelength. In the
random-matrix approach these approximations are needed in or-
der to find a suitable description of the basis to meet the require-
ments of the weak-disorder expansion theorem. The approaches
were thus found to be equivalent.
The different order in which the approximations are made,

however, enables us to gain understanding into the consequences
of the approximations and the uncertainties introduced by them.
In the kinetic-theory approach, it is more transparent how to add
corrections for ring collisions and correlations, whereas in the
random-matrix approach it is more clear how to add corrections
for shorter wavelengths and finite-size effects. The latter may give
insight into connections between the Lyapunov exponents and the
decay of correlations and fluctuations. Similar connections were
suggested by Taniguchi and Morriss [30]. Further investigation of
the continuum limit and the validity of the weak-disorder expan-
sion could perhaps also provide insight into the precise nature
of the destruction of the Goldstone modes as the wavelength be-
comes too short compared to the mean free path.
In systems with soft potentials, the calculations described in

this paper and in Ref. [7] become more complicated. Though the
Goldstone modes are present in simulations of gases of soft par-
ticles, the degeneracy disappears [11,19,31]. This could be related
to the fact that the zero modes are not as trivial in soft-potential
systems as they are in systemwith hard-core interaction [23]. Soft
potentials can produce qualitative differences in the Lyapunov ex-
ponents, as has also been concluded in Refs. [32,33].
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