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Kolmogorov-Sinai entropy for dilute systems of hard particles in equilibrium
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In an equilibrium system, the Kolmogorov-Sinai entropys equals the sum of the positive Lyapunov
exponents, the exponential rates of divergence of infinitesimal perturbations. Kinetic theory may be used to
calculate the Kolmogorov-Sinai entropy for dilute gases of many hard disks or spheres in equilibrium at low
number densityr. The density expansion dfs is NvA[In n+B+0(n)], wherev is the single-particle collision
frequency. Previous calculations Afwere successful. Calculations Bf however, were unsatisfactory. In this
paper, | show how the probability distribution of the stretching factor can be determined from a nonlinear
differential equation by an iterative method. From this the Kolmogorov-Sinai entropy follows as the average of
the logarithm of the stretching factor per unit time. | calculate approximate valuBsaofl compare these to
results from existing simulations. The agreement is good.
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[. INTRODUCTION will be introduced and its relation to the stretching factor will
The chaotspropertes ofsytems with many deqrees of ASCUSSEd 1 Sec. | folowed by an expanaton of e
freedom, such as moving hard spheres or disks, have bedhi y N Lo

studied frequently. Extensive simulation work has been car-StretChlng factor is calculated, and in Sec. V approximations

e ot on thi yspunoy specinfi=3,and forlow den. 12 MI20LCE0 0 e robabily drbulon offhe stetching
sities analytic calculations have been done for the large ' pap

Lyapunov exponenf4-7], the Kolmogorov-Sinai entropy ec. Vi
[4,8], and for the smallest positive Lyapunov exponents
[9,10. o _ _ Il. LYAPUNOV EXPONENTS
The Kolmogorov-Sinai entropy describes the maximal
rate at which the system produces information about its Consider a system with ak’-dimensional phase spate
phase-space trajectory. In closed systems, it equals the suft time t=0, the system is at an initial poin in this space.
of all positive Lyapunov exponents. It evolves with time according tg(yy,t). If the initial con-
In this paper, | consider a system consistinghohard, ditions are perturbed infinitesimally, byy, the system
spherical particles at small number densityin d dimen-  evolves along an infinitesimally different pagh+ 67y, which
sions(d=2,3). | calculate the Kolmogorov-Sinai entropy in can be specified by
the low-density approximation, where it is expected to be-

have as 57( 701t) = M'yo(t) ) 670! (2)
hks = NvA[— In(nad) + B + O(na%)] (1) in which the matrixMyO(t) is defined by
where v is the average single-particle collision frequency dy(yoV)

M, () = (3)

and a is the particle diameter. The constaAthas been dy,

calculated by van Beijereet al.[8], but the results found for _

B were unsatisfactory. | will show that the low-density ap- 1 N€ Lyapunov exponents are the possible average rates of

proximation made in that calculation, which produces gooddroWth of such perturbations—i.e.,

results in the case of the Lorentz gas, which consists of uni- 1

formly convex scatterers, is too drastic in the case of a many- N =lim = Injw;(t)], (4)

particle system. This has already been anticipated in[lRgf. oo

and preliminary estimates of the corrections were made bywhere y;(t) is theith eigenvalue oM, (). If the system is

Dorfman in Dorfmanet al. [11], but the present calculations ergodic, a trajectory spends the same amount of time in any

yield much more accurate values, which in principle couldpart of phase space for all initial conditions. Therefore, the

be improved even further. . Lyapunov exponents are the same for almost all initial con-

~ The paper is organized as follows: After a short introduc-gitions. One may order the exponents according to size, with

tion to Lyapunov exponents, the Kolmogorov-Sinai entropyy, peing the largest aniy the smallest, as is the convention.
For each exponent there is a corresponding eigenvector of
M, (0.

*Present address: Max-Planck-Institut fiir Physik Komplexer Sys- For a classical system & d-dimensional freely moving
teme, Nothnitzer StraRe 38, 01187 Dresden, Germany. Electronidard spheres without internal degrees of freedom, the phase
address: A.S.deWijn@phys.uu.nl space and tangent space may be represented by the positions
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and velocities of all particles and their infinitesimal devia-
tions,

¥ =(ri,vi), (5

oy, = (&, 6vy), (6)

wherei runs over all particles andy; is the contribution of
particlei to 5y.

Kolmogorov-Sinai entropy and stretching factor FIG. 1. Geometry of a collision of two particles in relative co-
In standard terminology, the stretching factbft) is de-  ordinates. The collision normak is the unit vector pointing from

fined as the factor by which the expanding part of tangenthe center of one particle to the center of the other.
space stretches over a tinheThis quantity can be used to
calculate the Ruelle pressure as well as the sum of the posi-Ill. DYNAMICS OF HARD SPHERES IN PHASE SPACE
tive Lyapunov exponents, which is equal to the Kolmogorov- AND TANGENT SPACE
S_|na| entropy in systgms W'.thOUt escaﬁjﬁ—lzl]_.'For long In order to calculate the single-particle stretching factors,
times, the stretching is dominated by the positive Lyapunov,

S one must derive the dynamics of the system in tangent space
exponents, and one has, for the Kolmogorov-Sinai entropy,from the dynamics in phase space

The evolution in phase space consists of an alternating

1
hks=lim = In A(t). (7)  sequence of free flights and collisions. During free flights the
o particles do not interact and the positions grow linearly with
For long times, the stretching factor can be calculated fronthe velocities,
the total growth of an arbitrary volume elementiN dimen- ri(t) =1i(ty) + (t— to)vi(to), (10)
sions. After a few multiples of the inverse of the smallest
positive Lyapunov exponent, the dynamics projects the vol- vi(®) = vi(to). (11)

ume element onto the expanding manifold and its subsequent

growth is completely described by the stretching factor. At a collision, momentum is exchanged between the collid-
For hard-sphere systems, where the collision times arang particles along the collision normafr=(r;-rj)/a, as

defined exactly, the stretching factor can be written as thehown in Fig. 1. The other particles do not interact. Using

product of the stretching factors resulting from each of theprimes to denote the coordinates in phase space after the

different single collisions combined with the subsequ@nt collision, one finds

previous free flights of the two particles involved. In this

description, the effects of the free flights of the other par-

ticles are accounted for at the collisions involving those par-

ticles. On the right-hand side of E¢), the logarithm may Vi =vi— o(o v, (13

be replaced by the sum of logarithms of these single- vy :

collision stretching factors. The resulting expression may b%\/:ﬁ]rigg Ifn_ Yén;gnlt:rsoprgciqc;;?r’l) t?g ?j eE&;.}(le)—(lB) the dy

interpreted as a time average, which in ergodic systems may During free flight there is no interaction between the par-

e replaced by an ensemble average. Hence, ticles and the components of the tangent-space vector trans-
Ny form according to
hKS: ?<In A|> (8) (a./

=6 )

= . , (14

At low densities, the single-particle collision frequeneys v 0 1 Vi

given by in which 1 is thed x d identity matrix.

A collision between particles and j only changes the
—_— (9) tangent-space vectors of the colliding partidlés As shown

F(d> VBAm in Fig. 1, an infinitesimal difference in the positions of the

particles leads to an infinitesimal change in the collision nor-

. mal and in the collision time. The+ v are exchanged along

The factorN»/2 in Eq. (8) equals the overall collision fre- g+ 8¢ according to Eq.(13). This leads to infinitesimal

quency.A,; is the single-collision stretching factor due to col- changes in both positions and velocities right after the colli-

lision i. In this paper, this includes the effects of the freesjon. For convenience one may switch to relative and center-

flights of the colliding particles after the collision and not of-mass coordinatesy ;= &= ar;, oR;;=(8r+dr))/2, dv;;

those before. To obtain the Kolmogorov-Sinai entropy from= vi—dvj, and 8V;; =(8v;+dv;)/2. These transform as

this, one must calculate the distribution of single-collision

stretching factors. o= o —2S - oy, (15)

ri=ri (12)
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R} = R, (16)

é\/i'j:b\/ij—ZS-é\/ij—ZQ-&ij, (17)

Wi’j = W” l (18)
in which S andQ are thed X d matrices:

S=o0, (19

_ [(o-vi)1+ovy] '[(&'Vij)l_vij&].

Here the notatiorab denotes the standard tensor product of

vectorsa andb. Note thatQ transformsdr;; vectors which
are orthogonal te;; into vectors which are orthogonal \‘q
The vectorv;; is a right zero eigenvector & andV;; a left
zero eigenvector. Note that these drdimensional vectors,
not 2d-dimensional.

IV. STRETCHING FACTOR

PHYSICAL REVIEW E 71, 046211(2005

script + and those just before the next collision with a su-
perscript—, one may write
oy =or + mov, (21)

where 7; is the free-flight time of particle. Note thatr
typically is of the order of 17. In previous calculations, it
was usually assumed that right after a collisiéni and év,
were of the same order of magnitul®. Under this assump-
tion, the contribution fromdr;" to &r; may be neglected com-
pared torév;. Of courserdv; will be comparable todr;
after the previous collision if; is short. However, this occurs
only with a probability proportional to the density and there-
fore may be neglected in the average.

The assumption thadr; and év; just after a collision are
of the same order of magnitude, however, is only true for
d-1 components ofr;;—namely, the ones normal t@;.
The remaining component & ;;, which is alongv;;, and all
components obR;; are, after a collision, larger by an order
of 7 than the corresponding component &f, becauseQ,
defined in Eq(20), does not act on center-of-mass perturba-
tions, or on perturbations of relative coordinates parallel to

In order calculate the Kolmogorov-Sinai entropy from Eq. the relative velocity. In these directions, the components of
(8), one must find the probability distribution of the single- sy are of the same order of magnitude as before the collision,
particle stretching factor. In this section, | first derive theput the corresponding componentssfhave grown linearly
single-collision stretching factor as a function of the collisionduring the preceding free flights. | will show that this affects
parameters and other parameters which contain informatiofhe Kolmogorov-Sinai entropy, even at low density.

about the history of the system. Information about the history The determinant of

the transformation of the

will be replaced by a precollisional distribution function, dN-dimensional volume element projected oo depends
which is the distribution function averaged over an ensembl@n &r before the collisionsr may be assumed to depend on

of initial conditions.

A. Projection

The growth of adN-dimensional volume element i’

can be monitored through its projection onto a subspace
o' with at least the same number of dimensions, as long a:

this projection space is not orthogonal to one of dihelead-
ing eigenvectors dfl. In the limitt— o, the logarithm of the

determinant of the transformation of the projection yields the
same Kolmogorov-Sinai entropy as the logarithm of the

stretching factor of the actual volume element.

Q

If (éTi(m),b\/i(m)) are the eigenvectors belonging to the posi-

oV as

=TV v, (22)

e inverse of the radius of curvature tensor, which is often
used to calculate Lyapunov exponeritee, for example,
[13]). The matrix)V can be split up inta X d matrices be-
tween specific particles)V;;. As particles collide and have

gith ‘7=1/vthe average free-flight tim@) is proportional to

free flights,Wj; changes. The volume element projected onto
év before the collision is mapped to a projection of a volume
element after the collision. The determinant of this map de-
pends onW;, W;, W;;, andW;, where the second index is

tive exponents, the eigenvectors which belong to their coun: v I

terparts under conjugate pairing are equamq(m),—b\/i(m)).

omitted if it is the same as the first.
After the collision,)V is changed. From now on, a prime

This means that eigenvectors which have no contribution§iii pe used to denote a quantity after a collision and the

along eitherdr; or 4v; correspond to themselves under con-gyhsequent free fligs). Quantities just after a collision, be-
jugate pairing. Such eigenvectors must therefore havgyre the subsequent free flight, are indicated with a super-

Lyapunov exponents which are zero. TH&l-dimensional
vectors whose components belonging to particee or; and
év;, respectively. The spaces spanned by eitfieor dv are

script *.
The matrix W after the collision, /', can be found by
using the dynamics and ER2) to expresssr” just after the

not orthogonal to any eigenvectors which belong to the nongjjision in terms ofév*, the collision matrices, ant. Let
zero Lyapunov exponen®® anddv. In the system described g gng O be the(dNx dN)-dimensional matrices which per-

here a convenient choice for the projection space may thergs ., the transformations o andQ on the components of

fore be either of these spaces. Hede,is used for this pur-
pose, because it does not change during free flights.

B. Stretching factor of a single collision

During a free flight,6r grows with év. Denoting the per-

turbations in the position just after a collision with a super-

or and v along the colliding particles, as described in Egs.
(15—(18), and act as the unit operator on the components
belonging to all other particles. The transformation can be
written as

N =(T+S) - N+Q-o (23)
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=(Z+S+71Q-W) v, 24 At
( W 249 A= Wu(%?) cos30. (30)
S =(T+8) - =rT+8) -W-ov. (25 Here, #is the angle betweedr andv, cos¢=6-V, andw, |

is equal to the determinant of the part &V;+W,)/2 be-

Here, 7 is thedNx dN identity matrix. Note thaév' is equal  tween vectors that are orthogonallp before the collision.
to ov' and that all components afr* and &r' that do not  forg=2,

belong to either of the colliding particles remain the same.

This leads to an expression fér" as a function ofév": .~ Wi+W,
P WLL:VijL'I—Zl'VijL' (31
xT =WV, (26)

This expression replaces the facterr,, where 7,=(7
whereW' can be expressed in terms¥f and the collision +7;)/2, in previous calculations of the single-particle stretch-

matrices as ing factor[8]. In d dimensionsy;; ; must be replaced by a set
of d-1 vectors orthogonal t&;. The inner products are then
W =(IZ+8) - W-(T+S+70-W)™. (27)  replaced by the determinant of thel-1) X (d-1) matrix

with elements given by the innerproducts(&; +W,)/2 be-
Using (Z+8)™1=7+S, one may write this more conveniently tween those vectors.
as
W = (Z+S) '[W_l+RI+S) . Q]_l (T+95). (29 V. DISTRIBUTION FUNCTIONS
. , ) , In order to calculate the Kolmogorov-Sinai entropy from
At low densities, two particles which collide can be as-gq (8), one needs the distribution function of the single-
sumed to be uncorrelated before the collisi@oRzahlan-  cojjision stretching factor, as described by E480) and
sata. This means thatV;; =W;; =0, if i #|. After the colli-  (37) Thjs may be derived from the joint distribution function

sion there generally are nonzero elementWPH. , of the collision parameters;, 7;, v;, v;, and ¢ and the ele-
Wi also changes during the subsequent free flight.4.et ments ofw; andW,. In the low-density approximation, the

be the free-flight time of particle after the collision. Then,  ¢jlision parameters are distributed according to the equilib-

after the free flight, rium solutions of the Boltzmann equation.
L o The distribution of the particle velocities is the Maxwell
W= W, + v if k=1,j, distribution
W, if K#1,j.

24 -d/2 1
: , . . dm(vi) = (—) exp| - —Bm|v|2>. (32
Note that the change iar, with k#i,j due to free flights mB 2
was already taken into account at the collisions of particle 1,4 coliision rate for collisions at angieand with outgoing

The matrix)V as it is calculated here describes the connec;

) , > : velocitiesv; andv; is proportional to the differential cross
tions betweend; just before the next collision of particie  gection times the relative velocity, &R 6 coséu;;. The nor-
and év; just before the next collision of particie !

) . ) N malized probability distribution of the collision parameters is
The matrix (Z+S)-Q is non-negative definite and sym-

. . " - T k thus equal to
metric. If W is positive definite, so is its inverse. This means
that W i+7(Z+S)-Q is positive definite, as is its inverse. Vi —v]-|nad‘1

— i~d—2
The coordinate reflectiof+S is unitary, and therefore the P(vi,vj, O)dvidv;do = > sinf™? ¢ cos ¢
eigenvalues ofZ+S)- W' -(Z+S) are the same as those of
W'. Therefore)V' is positive definite. By similar reasoning, X du(Vi) u(vy)dvidv;de.  (33)

a symmetric)V is mapped onto a symmetrld”. Equation  The free-flight times of the particles are distributed exponen-

(29) glso maps non-negative d_efinite matrices onto positivqia"y, with the collision frequencyv(v) depending on the
definite matrices and symmetric ones onto symmetric Oneselocity of the particle, according to

As, without loss of generality, any initial conditions fov
may be chosen, it is possible to choose them such)thig p(rvi)d7= v(v))exd - »(vj) 7]dr, (34)

positive definite and symmetric. This can be done, for ex- N\ o -
ample, by choosing the initialV’ to be diagonal, with ele- where v(v;) is the velocity-dependent collision frequency.

ments equal to 1. This can can be found by integrating the collision rate over

The stretching factor due to one collision can be calcu—figfogu;gﬁggllﬁlgc'ty of the other particle and over the col-
lated from the determinant of the transformation of the pro- e

jection onto the perturbations of the relative and center-of-
mass velocitiesgv;; and 8V;;. From Eq.(24), one finds that (V) = f dv;dona®? sin®2 cosglv; - vj| (V). (35)
this is the determinant G+ {(Z+S)-Q -W.

In the low-density limit and with//;; =0, this is found to The distribution ofw, , can be found from the require-
be equal to ment that the distribution of elements \0f; as a function of
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v; is not changed by collisions. This yields a complicatedtive coordinates and the secofid d dimensions the second
nonlinear differential equation for the distribution of the el- throughdth) e, asV;;, in the relative coordinates. The re-
ements ofW; andW;. It involves the distribution of angles maining basis vectors may be chosen in any arbitraty way, as
between the relative velocities of subsequent collisions of dong as they are orthogonal to eachother and of unit length.
particle with velocityv; as well as the velocity dependence  Let A, represent thelN< dN matrix .4 with all rows and

of the collision frequency. The latter is only known numeri- columns removed except for those with indices specified by
cally. With the implied inclusion of the collision parameters the list €, where¢ may be any list of indices. Similarly, let
and coordinates of both particles in the distribution functionsA4,, be the matrixA with all rows and columns removed

implied in the integral, the equation can be written as with indices belonging to the list. Specifically, Ay, and
_ _ Aoy represent the matrixd from which the rows and col-
p’(W):dep(W)(S(W’(W)—W). (36)  umns belonging to, respectively, indéxand both indexk

and index 2 are removed.
The solution to this equation can be approximated using an From Eq.(28), the trace of/ can be found as a function
iterative approach. of the elements olV. As the trace is conserved under the
coordinate reflectioZ+S) - W-(Z+S), one finds

Approximation of the distribution of w, | defW+HZ+S)- Qlw

Rather than solving Eq.36) exactly, which is not feas- V) _Ek defWl+Hz+S)-0]
able, Eq.(36) may be used to iterate the distribution. One
may start with an initial distributiop())) and calculate the Here, the sum is over an orthonormal basisidf unit vec-
distribution after one collisionp’ (V). After every iteration, tors. In the low-density limit the mean free time becomes
the distribution more closely resembles the true solution ofarge and only terms in which the numerator contains the
the integral equation. However, even with a simple initialSame power ofr as the denominator can contribute. The
distribution, such iterations will quickly produce distribution Product of the nonzero eigenvalues (@+S)-Q can be di-
functions which can only be calculated numerically. In prin-Vided out, leaving only the determinant of the remaining part
ciple, the equation could be such that there is no convergend¥ WV, between vectors on whic@ does not work. As only
at all, but the nature of the physical problem dictates that théZ+S) - Q in Eq. (38) contains the collision normal, the trace
distribution of W converges after many collisions. of W' does, in the limit of vanashing density, not depend on

In this section, an alternative iterative approach is used td@, but only onV;; and the elements ofV.
find an approximate distribution function. We start with a  The trace oV can be rewritten as the sum over fractions
simple distribution with one parameter, which approximatesf subdeterminants,
the average trace element. The parameter is chosen in such a 1
way that the average of the trace Wf remains the same TIoV) =S det(W(er)).
after a collision and free flights. The nonlinear terms in the K22 de(W(‘zl))
equation for the distribution of the elements Wf, which N ) 1 ]
have zero average, can be ignored at first, due to the choideurther, after writing the inverse o#;" and by working out
of initial distribution. The integral equation is iterated a sec-the determinant of/V;, by induction over the number of
ond time to include some of these terms. Subsequently, th@dices occurring irt,

(38)

(39

size of the remaining corrections after more iterations is es- detW(—el) = detW, detW 2., (40)
timated.
From Egs.(40) and (39) one finds, ford=2,
1. Trace of W
o . . . deiWVyo)

In principle, it would be possible to use the determinant or TIOV) = 2, deVs (41
some other scalar function @, instead of the trace. It is, kr2 detV;
however, much easier to write down the map of the trace of
W onto the trace o¥V in Eq. (28) than it is to write down “Trow) - 60 W6, (42)

a map of the determinant during free flights. Also, only the

distribution of diagonal elements 04/ is actually needed. . ) )

Under unitary coordinate transformations, such as rotation! the d-dimensional case, is replaced byd-1 vectors and

and reflections, the trace of a matrix is conserved. Using &9 (42) becomes somewhat more complicated.

parameter is not really necessary; however, it greatly im- The change |n.off-_d|agc.)ne.1I elements at a coII|S|on_can be

proves the convergence toward the solution of the equatiofound from a derivation similar to that for the trace in Eq.
From Eq.(29), the trace ofi}’ can be found to satisfy (42),

TrOV') = Tr(W') + dvr, + dr;. (37)

11

(6 W- €)W €)
EQ'W'GQ

e;-W*e;:ep-W-eq— . (43
Let the dN-dimensional basis vectors in which the matrices
are expressed be numbered 1 throudfd. Let the first The expression fod=3 is similar. Ifp or q is equal to 2, the

dN-dimensional basis vecte; be defined ag;; in the rela-  off-diagonal element vanishes. Off-diagonal elements be-
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tween different particles are not affected by free flights, as is W =wlsg;, (44)
apparent from Eq(29).

_ The collisions are most conveniently expressed in the ba\?vhere&,j is the Kronecker delta. The initial distribution used
sis which consists of;; and thed-1 vectorsv; , orthogonal i the jteration process is a product of Dirddunctions at
to it. | therefore also express eatl; in this basis. the average value for the diagonal elements and at zero for
the off-diagonal elements. In a similar way, an exponential
distribution function can be used, with averaggeto test the

Assume that just before a collision tWg; are equal to sensitivity to the width of the distribution.

their averages anw/;; all zero. If the distribution of angles Using Eqs(28) and(29), one finds that after the collision
between the relative velocities of two consecutive collisionsand free flight, in the basis consisting @f and thed-1
is (nearly) isotropic, the two average diagonal elements arevectors orthogonal to it, the values 4f,, have changed

2. Iterative approach

(approximately equal, so that according to
|
(W+7Tk) 0
1 if k=l=i0k=1=j,
O §W+ V7K 1d—l
wy=¢({0 0 (45)

1 if (k,1)=(,j) Ok, =(,i),

0-5wld-1 (kD =(0,j) Ok =(,i)

(W1 if k=i0,j00#i,,

where 14_; denotes thgd-1)-dimensional identity matrix. rotation matrix is more complicated, and so Eg¢9) be-
This equation implies a distribution for the elements\V¢, comes more complicated. The resulting expressions are not
expressed in the basis belonging to the next collision, whiclieproduced here.

consists of;; and thed—-1 vectors orthogonal to ify; . The From Eq. (45 one can find the difference between the
new distribution of the matrix elements is the distribution of average traces af’ and . One finds

W, in the coordinates of the next collisioR;-Wy,-R/,

whereR; is the rotation matrix associated with the rotation (TrOWV")) =(Tr(W)y =2d - (d - 1w, (50
from the coordinate system using the postcollisional relative

velocity of a collision to the system using the precollisionalwhere the notatiof-) denotes the ensemble average. As the
relative velocity of the next collision of the same particle. In average trace must not change, one findswfdhe approxi-
two dimensions, this matrix is characterized by the anfjle mation,

between the relative velocities at the two collisions,
. 2d 4 ifd=2
cos¢;  sin g ) wo=—— = { ' (51)
= . 46 - if d=
i (_Sin¢i cosd (46) d-1 [3 ifd=3.

The distribution of this angle depends on the velocity of theNote that this result fow would be the same if an initial
particle between the two collisions. In three dimensions, thé&xponential distribution were used for the diagonal elements.
angle ¢ is to be replaced by two angles. The resulting distribution function faw, |, however, is dif-
From this approximation a distribution function of, ,  ferentin that case. The distribution function implied by Eq.
can be found, which depends @n At the next collision, it (49) for w, | at the next collision can be used to estimate the

is, for d=2, equal to the distribution of Kolmogorov-Sinai entropy from Eqg8) and (30). The in-
volvement of these expressions was already anticipated in
W, = }\7,] W]+ W) -3 (47) [11] by Dorfman, who predicted_ extra contributionsBoof
2 In4 and In 3 based on summations.

1 The approximation so far is fairly crude. The nonlinearity
==(0,1) - (R; - W/ -72iT+Rj W] -RjT) -(0,2) (48)  of Eq. (28) has been partially neglected by using the aver-
2 ages of the off-diagonal elements. In the second term in the
1 o calculation of the trace in Eq42) only the block diagonal
:ﬁl —Z(COSZ ¢ +cog ) | + v (49)  terms, those of the forrfi; , -W?-¥;; |, are involved. In real-
ity, since W is symmetric, the terms involving off-diagonal
The distribution ofw, ;| can be approximated by the distri- elements will also produce negative contributions to the av-
bution of the right-hand side of the equation. Fbr3, the  erage of the trace in E¢42).
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A better approximation of the average value can be founatountered before. These particles, which are not directly in-
by iterating the equation for the distribution a second timevolved in the collision, now contribute to the change in the
The distribution ofR; -W,Q,RiT can be used to calculate the trace, through the second term on the right-hand side of Eg.
trace ofWW'. The colliding particles are uncorrelated before (42). | find that ford=2 the trace in the low-density approxi-
the collision, but not independent of the particles they enmation satisfies

(TrO") =(Tr(W"))
. [2V%(77 + Az7y + ) + 100(7; + 7)W + 8W? = 2Wi(7, cOF b + 7; COS ¢h) = WA(COS ¢h; + COF )] 52
[20(7 + 7)) + 4w - cog ¢, — COF ;] '

This yields a result fow that is significantly different from At a collision between particleg andr, the change in the
Eq. (51). trace of)V, calculated in Eq(42), is affected by the elements
More iterations would produce more terms and will fur- of VW betweenq andr and other particles. After a collision
ther reduce the value found faov, converging to the exact between two particles, nonzero off-diagonal elements exist
result. A similar but far more complicated expression can béetween these particles. After a collision betweeand j,
found ford=3 from Eqgs.(42) and(45) and the general form off-diagonal elements between particleandk generate off-
of the three-dimensional rotation matrix. The results woulddiagonal elements betwegrandk, due to the exchange be-
improve if the distribution were iterated repeatedly, but thistween thedv; and dv;. If nonzero off-diagonal elements exist
would produce expressions of complexity increasing expobetweeni andk as well asj and| before the collision, after
nentially with the number of iterations. One more iterationthe collision nonzero elements will exist betwdeand!. A
would add four angles and four free-flight times to the ex-diagrammatic representation of the collision sequence is
pression in Eq(52). After the second iteration, the expres- shown in Fig. 2.
sion forw’ | is quite complicated and contains 12 correlated In order to estimate how much such terms contribute to
variables, 6 rotation angles, and 6 free flights. Also, the secthe change in the trace at a collision involving partil¢he
ond iteration already produces a reasonable result. | therefotgpical magnitude of the off-diagonal elements at a collision
continue using the distribution of’, |, but with the value of must be investigated. One may estimate the typical changes

w found from Eq.(52). in the off-diagonal block¥V;, andWj, at a collision between
The integrations over the distributions &f, ¢;, 7, and i andj, by estimating the changes in the trace of the off-
can be done numerically. The change in the trace is zero fatiagonal blocks. The typical size of the off-diagonal ele-
, ments can be characterized by the trace of the off-diagonal
Wb = {3'009 if d=2, (53) block Wj,. The diagonal elements of the off-diagonal blocks
. 2.107 if d=3. can be found from Eq(43). Using the fact thawV;; before

S L - . the collision is zero, one finds, in two dimensions, for the
The subscript mdex is introduced to indicate the welghtelements oM betweendr; and v,
given to the off-diagonal terms.

Vij - Wi - @=V; - Wy - &
(W W Y - (Wi = W) - €]
Vi (Wi + W) -y,

3. Off-diagonal elements from earlier collisions

If the contributions to the trace from the off-diagonal el-
ements involving the other particles from the previous colli-

sions, through the second term on the right-hand side of Eq. (55
(42), are ignored, the result is changed significantly. In this
case, Vi Wy -
3.408 if d=2 1, R

w = ! 4 =—V: (W -W. ) .e

o {2.639 if d=3. 54 2 i e T
At a collision between and j, the off-diagonal elements [V W= W) - TV - (W — W) - €]
between particles andk produce significant changes to the 205, (Wi + W) -3, '

diagonal elements dfV,,. It is therefore expected that con- (56)
tributions from particles involved in collisions before the

previous collision will also be significant. Also, if the other Here, & can be any vector in two dimensions. \I¥;, has

particle from the previous collision of particlehas collided  nonzero elements, thé;, does not, since the particleand

since, this has an effect of;. j were uncorrelated before the collision.\W; has nonzero
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In addition, if bothW; andW; have nonzero elements,
W, also has nonzero elements, which are due to the second
term on the right-hand side of E@43). The off-diagonal
elements generated in this way are small compared to the
elements generated from E@59) and(60). In fact, they are
smaller than the terms neglected from E¢s7) and (58),
because they contain products of the off-diagonal elements
which are small compared to the diagonal elements. As they
appear quadratically in the change in the trgsee Eq(42)],
they may be neglected, despite their quadratically larger
number.

From Egs.(59) and(60) an estimate can be made of the
contributions to the change in the trace in E42) from

FIG. 2. A diagrammatic representation of a series of collisions.qg|jisions before the previous collision, compared to the con-
At the collision between particlesandr, the off-diagonal elements  ihutions from just the previous collisions. The ratio be-
betweeny and particles contribute to the change in the trace. ThesetWeen the total contributions from off-diagonal elements to
elements date from the collision between partioleandy, in the o ohange in the trace and the contributions from just the
common history ofg ands. At some point in the past, there were previous collisions is denoted hy.
elements between a partidlén the history ofs and a particlek in In every collision in the history. off-diagonal elements are
the history ofg whenj, another particle in the history af collided created between the two coIIidin(:; particles and existing ele-

with i. After the collision there were elements betwegeand k, d di itud d d di
which, through more collisions, eventually lead to elements be_ments are reduced in magnitude and passed on according to

tweens and g. The size of the elements betwesrand q can be Egs.(59 and.(§0). In order to estimate the consequences of
estimated using Eq$59) and (60). W at a collision betweew andr (see Fig. 2. one has to
find the path through which information was passed on from
the collision between particles andy to the present colli-
sion betweerg andr as well as the path from the collision
betweenx andy to the particles at the time of the collision
betweeng andr, following a sequence of collisions, through
which the off-diagonal element between partiotpands is
affected. To this path belongs an approximate reduction of
Vi (Wi + W) -V, the size of the off-diagonal element, a product of factors of
G (W= W) -0 (d+1)/(2d) or (d-1)/(2d) for each collision in the paths. If
R L R [ e } ., the path continues with the same particle, there is a factor of
Vi (Wi + W) -5, (d+1)/(2d). If it switches to the other particle, the factor is
(57 (d=21)/(2d).
Every different product with the same number of factors

@ W0 (- We 0 follows a different path of that length and hence belongs to a
ST B ER AN E A S different present particle. The product of the two factors of

Vij - (Wi + W) - 05, two paths starting fromx andy gives the order of magnitude
) i, (W - W) 'Oijl-:| of the off-diagonal element betweénand k particles. The

elements after the collision, boWVj andWj, have nonzero
elements.
From Eq.(55) the traces after the collision may be found:

. o (U WG D) (V- W -
Tr(Wi'k)=Vij'Wik'Vij‘(” V)W W ¥y)

1. N
5 Wi 'Wik'vijJ_)|:1_

Tr(Wj) =

- = square of this factor then gives the relative size of the con-
Vi - (Wit W) - Vi tribution to the trace at the collision betweerand j. If a
(58) collision between two particles is nogvcollisions ago, then,

on average, the other part of the future of that collision has
It is fair to assume that the off-diagonal element$\gf tend  also hadp collisions. Summing over all the different paths of
to be smaller than the diagonal elements. Also, the diagonaéngth p, one finds that the relative contribution from colli-
elements ofW;-W; are, typically, much smaller than the sions that occurreg collisions before the previous collision
diagonal elements dfv;+W;. The terms with a quotient of can be approximated as
these can therefore be neglected in this rough estimation.

1. n
_E(Viji Wi Vi )| 1

2 2
Further, thed diagonal elements oV, are typically of the o~ (d + 1) P (61)
same size. These approximations leave us with the general P 202
expressions Summing over alp gives the estimate
d+1 4d*
Tr(Wi) = ——Tr(W,;,), 59 = ~—
(Wi >d (Wi (59 a=> @, B+ @-1) (62

p

The contributions from the previous collisions in Egs.
Tr(Wj’k) ~ d;Tr(Wik). (60) (42) and(52) can _be multiplied_byoz to _find a_n_estimate for
2d the total contribution of all particles with whidhandj have

046211-8



KOLMOGOROV-SINAI ENTROPY FOR DILUTE SYSTEMS. PHYSICAL REVIEW E 71, 046211(2005

a common history. This is an admittedly crude estimate, yet VI. RESULTS AND DISCUSSION
should give better results than just neglecting the history
before the previous collision. The terms in E§2) that are
due to the off-diagonal block between the colliding particles
and other particles may be multiplied ly With this correc-

As the free-flight times are inversely proportional to the
density,w, , 7 will be inversely proportional tm®*. This
leads to a general form for the Kolmogorov-Sinai entropy,

tion it is found that hks = NvA[— |n(nad) +B]. (65)
1) 2.929 if d=2, (63) In earlier calculation$8], A was calculated accurately. The
“ 1.947 if d=3. results forB, however, are unsatisfactory. The valued\afre

easily found from Eqgs(8) and(30) and the dependence of

The distribution function ofv, | contains an uncertainty the collision frequency on

in its width, which affects the results of the calculation.
When starting from the average, with every next iteration of d-1
the equation for the distribution function, the distribution be- A= N
comes widerw | looks like a sum of several weighted free-
flight times for each particle. If one starts from exponentiallyIf w, , is taken equal tor,, the results forB of [8] are
distributed diagonal elements, rather than simply the avereproduced,
ages, the distribution becomes narrower with every iteration.

. K - . . - d-1
By starting from an exponential distribution, one may esti- Poc= Ny | 20 T, &3 67)
mate the consequences of the width of the distribution of the KS™ o n co '
elements. With an initial exponential distribution, one finds

(66)

This yields
e 2.426 if d=2, 64 _
“ " |1.676 if d=3. 5 0209 ifd=2,
-0.583 if d=3 (68)
By substituting the distribution function induced by one | o
iteration, together with the average, into E8). one can now From molecular-dynamics simulations the Kolmogorov-
estimate the Kolmogorov-Sinai entropy. Sinai entropy has been calculateg15]. It is found that

s _ {(0.499 +0.00INw(- Inna®+ 1.366 + 0.005 if d=2, 69)

KS™1(1.02 £0.02N(- In na? + 0.29 + 0.0 if d=3.

In the calculation presented here, E&7) has to be the average. Due to this, cutting off the process after two
amended, to become iterations produces a result for the Kolmogorov-Sinai en-
_ d-1 tropy which is too high. Note that also a wider spread of the
hys = M<In{wu<% cod3 0]> (70) off-diagonal elements leads to larger contributions from the

2 a off-diagonal terms in Eq42) and therefore to a smallav,

. o which yields a smaller value faB. Equation(71) threfore
From Egs.(49) and(53), one finds, after numerical integra- gives an upper bound fd.

tion, that By starting from a wider distribution of diagonal elements
1592 if d=2 instead of a product of Diraé functions, an estimate can be
D)~ _ ’ (71)  made of the effects of the width of the distribution. From the
0.476 if d=3. results of an exponential initial distribution, E@4), an es-

If the contributions from the off-diagonal elements in Eq. timation is found,

(42) are increased by the estimate of the remaining terms, e 1.370 if d=2,
through a factor ofy, the results change to B, =~ 0.273 if d=3 (73)
<al> ~ {1'572 !f d=2, (72) From these two estimated bounds, a final estimat® of
0.427 if d=3. may be made, including error bounds,
This more closely reproduces the simulation results shown in 1.47+0.11 if d=2,
B= 74
Eq. (69). 0.35+0.08 if d=3. (49

After every extra iteration in the calculation, the distribu-
tion becomes wider and therefore the average of the logaFhe errors could be reduced by using distribution functions
rithm of w, | becomes smaller compared to the logarithm offor w, | that have been iterated a larger number of times.
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The values of the Kolmogorov-Sinai entropy found in thefurther improved by performing more iterations of the distri-
molecular-dynamics simulations, E(69), are well within  bution. The values foB found in the present calculation are
the error bounds of Eq74). in good agreement with the results from molecular-dynamics
simulations [15]. Also, an upper bound was found for
B—that is,B<1.592 ford=2 andB<0.476 ford=3.
VII. CONCLUSIONS The smaller Lyapunov exponents of this system are pro-
In this paper, an estimation using kinetic theory is pre-Portional tov. The ones which are not due to Goldstone
sented of the Kolmogorov-Sinai entropy of dilute hard- modes contribute S|gn|f|cantIyIB|n the Kolmogorov-Sinai
sphere gases in equilibrium. Kinetic theory has been applieNtroPY. The calculation oB presented here shows effects
before to calculate chaotic propertigg 16,17, such as the which affect the behavior of these Lyapunov exponents to
Lyapunov spectrum of the high-dimensional Lorentz gadhe leading ordef22]. ,
[12]. In systems with escape, the Kolmogorov-Sinai entropy It should be noted that effects such as the ones described

has also been connected to transport coefficidigs21, but ~ nere do not affect the Lyapunov spectrum of the high-
in the system investigated here, it is just equal to the sum ofimensional Lorentz gas, calculated in Ref2], because the

the positive Lyapunov exponents. It is known that the lead-SCalterers in that system are uniformly convex. However,

ing orders are of the formivA(-In n+B) [8]. Fhey are generic for the Lyapunov spectra of systems consist-
A nonlinear integral equation was derived for the jointIng of many particles.

distribution function of the elements of the inverse of the

radius of curvature tensor. This equation was approximately

solved by the use of an iterative methd®.was estimated | would like to thank Henk van Beijeren for many helpful

from the solution in a satisfactory way, with results which discussions and for making me explain things properly. This

are consistent with simulation results. It was found tBat work was supported by the “Collective and cooperative sta-

=1.47+0.11 ford=2 andB=0.35+0.08 ford=3. The ap- tistical physics phenomena” program of FO[Aundament-

proximations made are systematic, and the results can keel Onderzoek der Matejie
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