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In an equilibrium system, the Kolmogorov-Sinai entropyhKS equals the sum of the positive Lyapunov
exponents, the exponential rates of divergence of infinitesimal perturbations. Kinetic theory may be used to
calculate the Kolmogorov-Sinai entropy for dilute gases of many hard disks or spheres in equilibrium at low
number densityn. The density expansion ofhKS is Nn̄Afln n+B+Osndg, wheren̄ is the single-particle collision
frequency. Previous calculations ofA were successful. Calculations ofB, however, were unsatisfactory. In this
paper, I show how the probability distribution of the stretching factor can be determined from a nonlinear
differential equation by an iterative method. From this the Kolmogorov-Sinai entropy follows as the average of
the logarithm of the stretching factor per unit time. I calculate approximate values ofB and compare these to
results from existing simulations. The agreement is good.
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I. INTRODUCTION

The chaotic properties of systems with many degrees of
freedom, such as moving hard spheres or disks, have been
studied frequently. Extensive simulation work has been car-
ried out on their Lyapunov spectrumf1–3g, and for low den-
sities analytic calculations have been done for the largest
Lyapunov exponentf4–7g, the Kolmogorov-Sinai entropy
f4,8g, and for the smallest positive Lyapunov exponents
f9,10g.

The Kolmogorov-Sinai entropy describes the maximal
rate at which the system produces information about its
phase-space trajectory. In closed systems, it equals the sum
of all positive Lyapunov exponents.

In this paper, I consider a system consisting ofN hard,
spherical particles at small number densityn, in d dimen-
sionssd=2,3d. I calculate the Kolmogorov-Sinai entropy in
the low-density approximation, where it is expected to be-
have as

hKS = Nn̄Af− lnsnadd + B + Osnaddg, s1d

where n̄ is the average single-particle collision frequency
and a is the particle diameter. The constantA has been
calculated by van Beijerenet al. f8g, but the results found for
B were unsatisfactory. I will show that the low-density ap-
proximation made in that calculation, which produces good
results in the case of the Lorentz gas, which consists of uni-
formly convex scatterers, is too drastic in the case of a many-
particle system. This has already been anticipated in Ref.f8g
and preliminary estimates of the corrections were made by
Dorfman in Dorfmanet al. f11g, but the present calculations
yield much more accurate values, which in principle could
be improved even further.

The paper is organized as follows: After a short introduc-
tion to Lyapunov exponents, the Kolmogorov-Sinai entropy

will be introduced and its relation to the stretching factor will
be discussed in Sec. II followed by an explanation of the
relevant dynamics of hard disks in Sec. III. In Sec. IV, the
stretching factor is calculated, and in Sec. V approximations
are introduced to the probability distribution of the stretching
factor. The paper finishes with a discussion of the results in
Sec. VI.

II. LYAPUNOV EXPONENTS

Consider a system with anN-dimensional phase spaceG.
At time t=0, the system is at an initial pointg0 in this space.
It evolves with time according togsg0,td. If the initial con-
ditions are perturbed infinitesimally, bydg0, the system
evolves along an infinitesimally different pathg+dg, which
can be specified by

dgsg0,td = Mg0
std · dg0, s2d

in which the matrixMg0
std is defined by

Mg0
std =

dgsg0,td
dg0

. s3d

The Lyapunov exponents are the possible average rates of
growth of such perturbations—i.e.,

li = lim
t→`

1

t
lnumistdu, s4d

wheremistd is the ith eigenvalue ofMg0
std. If the system is

ergodic, a trajectory spends the same amount of time in any
part of phase space for all initial conditions. Therefore, the
Lyapunov exponents are the same for almost all initial con-
ditions. One may order the exponents according to size, with
l1 being the largest andlN the smallest, as is the convention.
For each exponent there is a corresponding eigenvector of
Mg0

std.
For a classical system ofN d-dimensional freely moving

hard spheres without internal degrees of freedom, the phase
space and tangent space may be represented by the positions
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and velocities of all particles and their infinitesimal devia-
tions,

gi = sr i,vid, s5d

dgi = sdr i,dvid, s6d

wherei runs over all particles anddgi is the contribution of
particle i to dg.

Kolmogorov-Sinai entropy and stretching factor

In standard terminology, the stretching factorLstd is de-
fined as the factor by which the expanding part of tangent
space stretches over a timet. This quantity can be used to
calculate the Ruelle pressure as well as the sum of the posi-
tive Lyapunov exponents, which is equal to the Kolmogorov-
Sinai entropy in systems without escapef12–14g. For long
times, the stretching is dominated by the positive Lyapunov
exponents, and one has, for the Kolmogorov-Sinai entropy,

hKS = lim
t→`

1

t
ln Lstd. s7d

For long times, the stretching factor can be calculated from
the total growth of an arbitrary volume element indN dimen-
sions. After a few multiples of the inverse of the smallest
positive Lyapunov exponent, the dynamics projects the vol-
ume element onto the expanding manifold and its subsequent
growth is completely described by the stretching factor.

For hard-sphere systems, where the collision times are
defined exactly, the stretching factor can be written as the
product of the stretching factors resulting from each of the
different single collisions combined with the subsequentsor
previousd free flights of the two particles involved. In this
description, the effects of the free flights of the other par-
ticles are accounted for at the collisions involving those par-
ticles. On the right-hand side of Eq.s7d, the logarithm may
be replaced by the sum of logarithms of these single-
collision stretching factors. The resulting expression may be
interpreted as a time average, which in ergodic systems may
be replaced by an ensemble average. Hence,

hKS =
Nn̄

2
kln Lil. s8d

At low densities, the single-particle collision frequencyn̄ is
given by

n̄ =
2psd−1d/2

GSd

2
D

nad−1

Îbm
. s9d

The factorNn̄ /2 in Eq. s8d equals the overall collision fre-
quency.Li is the single-collision stretching factor due to col-
lision i. In this paper, this includes the effects of the free
flights of the colliding particles after the collision and not
those before. To obtain the Kolmogorov-Sinai entropy from
this, one must calculate the distribution of single-collision
stretching factors.

III. DYNAMICS OF HARD SPHERES IN PHASE SPACE
AND TANGENT SPACE

In order to calculate the single-particle stretching factors,
one must derive the dynamics of the system in tangent space
from the dynamics in phase space.

The evolution in phase space consists of an alternating
sequence of free flights and collisions. During free flights the
particles do not interact and the positions grow linearly with
the velocities,

r istd = r ist0d + st − t0dvist0d, s10d

vistd = vist0d. s11d

At a collision, momentum is exchanged between the collid-
ing particles along the collision normal,ŝ=sr i −r jd /a, as
shown in Fig. 1. The other particles do not interact. Using
primes to denote the coordinates in phase space after the
collision, one finds

r i8 = r i , s12d

vi8 = vi − ŝsŝ ·vi jd, s13d

wherevi j =vi −v j. From Eq.s3d and Eqs.s10d–s13d the dy-
namics in tangent space can be derivedf5g.

During free flight there is no interaction between the par-
ticles and the components of the tangent-space vector trans-
form according to

Sdr i8

dvi8
D = S1 st − t0d1

0 1
D ·Sdr i

dvi
D , s14d

in which 1 is thed3d identity matrix.
A collision between particlesi and j only changes the

tangent-space vectors of the colliding particlesf4g. As shown
in Fig. 1, an infinitesimal difference in the positions of the
particles leads to an infinitesimal change in the collision nor-
mal and in the collision time. Thev+dv are exchanged along
ŝ+dŝ according to Eq.s13d. This leads to infinitesimal
changes in both positions and velocities right after the colli-
sion. For convenience one may switch to relative and center-
of-mass coordinates,dr i j =dr i −dr j, dRi j =sdr i +dr jd /2, dvi j

=dvi −dv j, anddV i j =sdvi +dv jd /2. These transform as

dr i j8 = dr i j − 2S · dr i j , s15d

FIG. 1. Geometry of a collision of two particles in relative co-
ordinates. The collision normalŝ is the unit vector pointing from
the center of one particle to the center of the other.
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dRi j8 = dRi j , s16d

dvi j8 = dvi j − 2S · dvi j − 2Q · dr i j , s17d

dV i j8 = dV i j , s18d

in which S andQ are thed3d matrices:

S = ŝŝ, s19d

Q =
fsŝ ·vi jd1 + ŝvi jg · fsŝ ·vi jd1 − vi jŝg

asŝ ·vi jd
. s20d

Here the notationab denotes the standard tensor product of
vectorsa andb. Note thatQ transformsdr i j vectors which
are orthogonal tovi j into vectors which are orthogonal tovi j8 .
The vectorv̂i j is a right zero eigenvector ofQ and v̂i j8 a left
zero eigenvector. Note that these ared-dimensional vectors,
not 2d-dimensional.

IV. STRETCHING FACTOR

In order calculate the Kolmogorov-Sinai entropy from Eq.
s8d, one must find the probability distribution of the single-
particle stretching factor. In this section, I first derive the
single-collision stretching factor as a function of the collision
parameters and other parameters which contain information
about the history of the system. Information about the history
will be replaced by a precollisional distribution function,
which is the distribution function averaged over an ensemble
of initial conditions.

A. Projection

The growth of adN-dimensional volume element indG
can be monitored through its projection onto a subspace of
dG with at least the same number of dimensions, as long as
this projection space is not orthogonal to one of thedN lead-
ing eigenvectors ofM. In the limit t→`, the logarithm of the
determinant of the transformation of the projection yields the
same Kolmogorov-Sinai entropy as the logarithm of the
stretching factor of the actual volume element.

If sdr i
smd ,dvi

smdd are the eigenvectors belonging to the posi-
tive exponents, the eigenvectors which belong to their coun-
terparts under conjugate pairing are equal tosdr i

smd ,−dvi
smdd.

This means that eigenvectors which have no contributions
along eitherdr i or dvi correspond to themselves under con-
jugate pairing. Such eigenvectors must therefore have
Lyapunov exponents which are zero. ThedN-dimensional
vectors whose components belonging to particlei aredr i and
dvi, respectively. The spaces spanned by eitherdr or dv are
not orthogonal to any eigenvectors which belong to the non-
zero Lyapunov exponentsdr anddv. In the system described
here a convenient choice for the projection space may there-
fore be either of these spaces. Here,dv is used for this pur-
pose, because it does not change during free flights.

B. Stretching factor of a single collision

During a free flight,dr grows withdv. Denoting the per-
turbations in the position just after a collision with a super-

script 1 and those just before the next collision with a su-
perscript2, one may write

dr i
− = dr i

+ + tidvi , s21d

where ti is the free-flight time of particlei. Note thatti
typically is of the order of 1/n̄. In previous calculations, it
was usually assumed that right after a collisiondr i

+ anddvi
were of the same order of magnitudef8g. Under this assump-
tion, the contribution fromdr i

+ to dr i
− may be neglected com-

pared totidvi. Of coursetidvi will be comparable todr i
+

after the previous collision ifti is short. However, this occurs
only with a probability proportional to the density and there-
fore may be neglected in the average.

The assumption thatdr i anddvi just after a collision are
of the same order of magnitude, however, is only true for
d−1 components ofdr i j—namely, the ones normal tov̂i j .
The remaining component ofdr i j , which is alongv̂i j , and all
components ofdRi j are, after a collision, larger by an order
of t than the corresponding component ofdvi, becauseQ,
defined in Eq.s20d, does not act on center-of-mass perturba-
tions, or on perturbations of relative coordinates parallel to
the relative velocity. In these directions, the components of
dv are of the same order of magnitude as before the collision,
but the corresponding components ofdr have grown linearly
during the preceding free flights. I will show that this affects
the Kolmogorov-Sinai entropy, even at low density.

The determinant of the transformation of the
dN-dimensional volume element projected ontodv depends
on dr before the collision.dr may be assumed to depend on
dv as

dr = t̄W · dv, s22d

with t̄=1/n̄ the average free-flight time.W is proportional to
the inverse of the radius of curvature tensor, which is often
used to calculate Lyapunov exponentsssee, for example,
f13gd. The matrixW can be split up intod3d matrices be-
tween specific particles,Wi j . As particles collide and have
free flights,Wi j changes. The volume element projected onto
dv before the collision is mapped to a projection of a volume
element after the collision. The determinant of this map de-
pends onWi, W j, Wi j , andW ji , where the second index is
omitted if it is the same as the first.

After the collision,W is changed. From now on, a prime
will be used to denote a quantity after a collision and the
subsequent free flightssd. Quantities just after a collision, be-
fore the subsequent free flight, are indicated with a super-
script p.

The matrixW after the collision,W* , can be found by
using the dynamics and Eq.s22d to expressdr * just after the
collision in terms ofdv* , the collision matrices, andW. Let
S andQ be thesdN3dNd-dimensional matrices which per-
form the transformations ofS andQ on the components of
dr anddv along the colliding particles, as described in Eqs.
s15d–s18d, and act as the unit operator on the components
belonging to all other particles. The transformation can be
written as

dv8 = sI + Sd · dv + Q · dr s23d
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=sI + S + t̄Q ·Wd · dv, s24d

dr * = sI + Sd · dr = t̄sI + Sd ·W · dv. s25d

Here,I is thedN3dN identity matrix. Note thatdv8 is equal
to dv* and that all components ofdr * and dr 8 that do not
belong to either of the colliding particles remain the same.
This leads to an expression fordr * as a function ofdv* :

dr * = t̄W* · dv* , s26d

whereW* can be expressed in terms ofW and the collision
matrices as

W* = sI + Sd ·W · sI + S + t̄Q ·Wd−1. s27d

Using sI+Sd−1=I+S, one may write this more conveniently
as

W* = sI + Sd · fW−1 + t̄sI + Sd ·Qg−1 · sI + Sd. s28d

At low densities, two particles which collide can be as-
sumed to be uncorrelated before the collisionsStoßzahlan-
satzd. This means thatWi j =W ji =0, if i Þ j . After the colli-
sion there generally are nonzero elements inWi j

* .
Wi also changes during the subsequent free flight. Letti

be the free-flight time of particlei after the collision. Then,
after the free flight,

Wk8 = HWk
* + 1n̄tk if k = i, j ,

Wk
* if k Þ i, j .

J s29d

Note that the change indr k with kÞ i , j due to free flights
was already taken into account at the collisions of particlek.
The matrixW as it is calculated here describes the connec-
tions betweendr i just before the next collision of particlei
anddv j just before the next collision of particlej .

The matrix sI+Sd ·Q is non-negative definite and sym-
metric. If W is positive definite, so is its inverse. This means
that W−1+ t̄sI+Sd ·Q is positive definite, as is its inverse.
The coordinate reflectionI+S is unitary, and therefore the
eigenvalues ofsI+Sd ·W* ·sI+Sd are the same as those of
W* . Therefore,W* is positive definite. By similar reasoning,
a symmetricW is mapped onto a symmetricW* . Equation
s29d also maps non-negative definite matrices onto positive
definite matrices and symmetric ones onto symmetric ones.
As, without loss of generality, any initial conditions forW
may be chosen, it is possible to choose them such thatW is
positive definite and symmetric. This can be done, for ex-
ample, by choosing the initialW to be diagonal, with ele-
ments equal to 1.

The stretching factor due to one collision can be calcu-
lated from the determinant of the transformation of the pro-
jection onto the perturbations of the relative and center-of-
mass velocities,dvi j anddV i j . From Eq.s24d, one finds that
this is the determinant ofI+ t̄sI+Sd ·Q ·W.

In the low-density limit and withWi j =0, this is found to
be equal to

L = w''S2vt̄

a
Dd−1

cosd−3u. s30d

Here,u is the angle betweenŝ andv, cosu=ŝ ·v̂, andw''

is equal to the determinant of the part ofsWi +W jd /2 be-
tween vectors that are orthogonal tov̂i j before the collision.
For d=2,

w'' = v̂i j ' ·
Wi + W j

2
· v̂i j '. s31d

This expression replaces the factorn̄t+, where t+=sti

+t jd /2, in previous calculations of the single-particle stretch-
ing factorf8g. In d dimensions,v̂i j ' must be replaced by a set
of d−1 vectors orthogonal tov̂i j . The inner products are then
replaced by the determinant of thesd−1d3 sd−1d matrix
with elements given by the innerproducts ofsWi +W jd /2 be-
tween those vectors.

V. DISTRIBUTION FUNCTIONS

In order to calculate the Kolmogorov-Sinai entropy from
Eq. s8d, one needs the distribution function of the single-
collision stretching factor, as described by Eqs.s30d and
s31d. This may be derived from the joint distribution function
of the collision parametersti, t j, vi, v j, and u and the ele-
ments ofWi andW j. In the low-density approximation, the
collision parameters are distributed according to the equilib-
rium solutions of the Boltzmann equation.

The distribution of the particle velocities is the Maxwell
distribution

fMsvid = S 2p

mb
D−d/2

expS−
1

2
bmuvu2D . s32d

The collision rate for collisions at angleu and with outgoing
velocitiesvi and v j is proportional to the differential cross
section times the relative velocity, sind−2 u cosuvi j . The nor-
malized probability distribution of the collision parameters is
thus equal to

psvi,v j,uddvidv jdu =
uvi − v junad−1

n̄
sind−2 u cosu

3 fMsvidfMsv jddvidv jdu. s33d

The free-flight times of the particles are distributed exponen-
tially, with the collision frequencynsvd depending on the
velocity of the particle, according to

ptstuviddt = nsvidexpf− nsvidtgdt, s34d

where nsvid is the velocity-dependent collision frequency.
This can can be found by integrating the collision rate over
the outgoing velocity of the other particle and over the col-
lision normal—i.e.,

nsvid =E dv jdunad−1 sind−2 cosuuvi − v jufMsv jd. s35d

The distribution ofw'' can be found from the require-
ment that the distribution of elements ofWi as a function of
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vi is not changed by collisions. This yields a complicated
nonlinear differential equation for the distribution of the el-
ements ofWi andW j. It involves the distribution of angles
between the relative velocities of subsequent collisions of a
particle with velocityvi as well as the velocity dependence
of the collision frequency. The latter is only known numeri-
cally. With the implied inclusion of the collision parameters
and coordinates of both particles in the distribution functions
implied in the integral, the equation can be written as

p8sW̃d =E dWpsWdd„W8sWd − W̃…. s36d

The solution to this equation can be approximated using an
iterative approach.

Approximation of the distribution of w��

Rather than solving Eq.s36d exactly, which is not feas-
able, Eq.s36d may be used to iterate the distribution. One
may start with an initial distributionpsWd and calculate the
distribution after one collision,p8sWd. After every iteration,
the distribution more closely resembles the true solution of
the integral equation. However, even with a simple initial
distribution, such iterations will quickly produce distribution
functions which can only be calculated numerically. In prin-
ciple, the equation could be such that there is no convergence
at all, but the nature of the physical problem dictates that the
distribution ofW converges after many collisions.

In this section, an alternative iterative approach is used to
find an approximate distribution function. We start with a
simple distribution with one parameter, which approximates
the average trace element. The parameter is chosen in such a
way that the average of the trace ofW remains the same
after a collision and free flights. The nonlinear terms in the
equation for the distribution of the elements ofW, which
have zero average, can be ignored at first, due to the choice
of initial distribution. The integral equation is iterated a sec-
ond time to include some of these terms. Subsequently, the
size of the remaining corrections after more iterations is es-
timated.

1. Trace ofW
In principle, it would be possible to use the determinant or

some other scalar function ofW, instead of the trace. It is,
however, much easier to write down the map of the trace of
W onto the trace ofW* in Eq. s28d than it is to write down
a map of the determinant during free flights. Also, only the
distribution of diagonal elements ofW is actually needed.
Under unitary coordinate transformations, such as rotations
and reflections, the trace of a matrix is conserved. Using a
parameter is not really necessary; however, it greatly im-
proves the convergence toward the solution of the equation.

From Eq.s29d, the trace ofW8 can be found to satisfy

TrsW8d = TrsW*d + dn̄ti + dn̄t j . s37d

Let thedN-dimensional basis vectors in which the matrices
are expressed be numbered 1 throughdN. Let the first
dN-dimensional basis vectore1 be defined asv̂i j in the rela-

tive coordinates and the secondsin d dimensions the second
throughdthd e2 as v̂i j ' in the relative coordinates. The re-
maining basis vectors may be chosen in any arbitraty way, as
long as they are orthogonal to eachother and of unit length.

Let A, represent thedN3dN matrix A with all rows and
columns removed except for those with indices specified by
the list ,, where, may be any list of indices. Similarly, let
As,d be the matrixA with all rows and columns removed
with indices belonging to the list,. Specifically,Askd and
Ask2d represent the matrixA from which the rows and col-
umns belonging to, respectively, indexk and both indexk
and index 2 are removed.

From Eq.s28d, the trace ofW* can be found as a function
of the elements ofW. As the trace is conserved under the
coordinate reflectionsI+Sd ·W ·sI+Sd, one finds

TrsW*d = o
k

detfW−1 + t̄sI + Sd ·Qgskd

detfW−1 + t̄sI + Sd ·Qg
. s38d

Here, the sum is over an orthonormal basis ofdN unit vec-
tors. In the low-density limit the mean free time becomes
large and only terms in which the numerator contains the
same power oft̄ as the denominator can contribute. The
product of the nonzero eigenvalues ofsI+Sd ·Q can be di-
vided out, leaving only the determinant of the remaining part
of W, between vectors on whichQ does not work. As only
sI+Sd ·Q in Eq. s38d contains the collision normal, the trace
of W* does, in the limit of vanashing density, not depend on
u, but only onv̂i j and the elements ofW.

The trace ofW* can be rewritten as the sum over fractions
of subdeterminants,

TrsW*d = o
kÞ2

detsWsk2d
−1 d

detsWs2d
−1d

. s39d

Further, after writing the inverse ofW,
−1 and by working out

the determinant ofW,, by induction over the number of
indices occurring in,,

detWs,d
−1 = detW, detW−1. s40d

From Eqs.s40d and s39d one finds, ford=2,

TrsW*d = o
kÞ2

detsWk2d
detW2

s41d

=TrsWd −
1

w''

e2 ·W2 · e2. s42d

In thed-dimensional case,e2 is replaced byd−1 vectors and
Eq. s42d becomes somewhat more complicated.

The change in off-diagonal elements at a collision can be
found from a derivation similar to that for the trace in Eq.
s42d,

ep
* ·W*eq

* = ep ·W · eq −
sep ·W · e2dse2 ·W · eqd

e2 ·W · e2
. s43d

The expression ford=3 is similar. If p or q is equal to 2, the
off-diagonal element vanishes. Off-diagonal elements be-
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tween different particles are not affected by free flights, as is
apparent from Eq.s29d.

The collisions are most conveniently expressed in the ba-
sis which consists ofv̂i j and thed−1 vectorsv̂i j ' orthogonal
to it. I therefore also express eachWi j in this basis.

2. Iterative approach

Assume that just before a collision theWi are equal to
their averages andWi j all zero. If the distribution of angles
between the relative velocities of two consecutive collisions
is snearlyd isotropic, the two average diagonal elements are
sapproximatelyd equal, so that

Wi j = w̄1di j , s44d

wheredi j is the Kronecker delta. The initial distribution used
in the iteration process is a product of Diracd functions at
the average valuew̄ for the diagonal elements and at zero for
the off-diagonal elements. In a similar way, an exponential
distribution function can be used, with averagew̄, to test the
sensitivity to the width of the distribution.

Using Eqs.s28d ands29d, one finds that after the collision
and free flight, in the basis consisting ofv̂i j and thed−1
vectors orthogonal to it, the values ofWkl have changed
according to

Wkl8 =51
sw̄ + n̄tkd 0

0 S1

2
w̄ + n̄tkD1d−12 if k = l = i ∨ k = l = j ,

10 0

0 −
1

2
w̄1d−12 if sk,ld = si, jd ∨ sk,ld = s j ,id,

w̄1dkl if k Þ i, j ∨ l Þ i, j ,

6 s45d

where 1d−1 denotes thesd−1d-dimensional identity matrix.
This equation implies a distribution for the elements ofWi j8
expressed in the basis belonging to the next collision, which
consists ofv̂i j8 and thed−1 vectors orthogonal to it,v̂i j '8 . The
new distribution of the matrix elements is the distribution of
Wkl in the coordinates of the next collision,Ri ·Wkl8 ·Ri

T,
whereRi is the rotation matrix associated with the rotation
from the coordinate system using the postcollisional relative
velocity of a collision to the system using the precollisional
relative velocity of the next collision of the same particle. In
two dimensions, this matrix is characterized by the anglefi
between the relative velocities at the two collisions,

Ri = S cosfi sinfi

− sinfi cosfi
D . s46d

The distribution of this angle depends on the velocity of the
particle between the two collisions. In three dimensions, the
anglefi is to be replaced by two angles.

From this approximation a distribution function ofw''

can be found, which depends onw̄. At the next collision, it
is, for d=2, equal to the distribution of

w''8 =
1

2
v̂i j8 · sWi8 + W j8d · v̂i j8 s47d

=
1

2
s0,1d · sRi ·Wi8 ·Ri

T + R j ·W j8 ·R j
Td · s0,1d s48d

=w̄F1 −
1

4
scos2 fi + cos2 f jdG + n̄t+. s49d

The distribution ofw'' can be approximated by the distri-
bution of the right-hand side of the equation. Ford=3, the

rotation matrix is more complicated, and so Eq.s49d be-
comes more complicated. The resulting expressions are not
reproduced here.

From Eq. s45d one can find the difference between the
average traces ofW8 andW. One finds

kTrsW8dl − kTrsWdl = 2d − sd − 1dw̄, s50d

where the notationk·l denotes the ensemble average. As the
average trace must not change, one finds, forw̄ the approxi-
mation,

w̄s0d =
2d

d − 1
= H4 if d = 2,

3 if d = 3.
J s51d

Note that this result forw̄ would be the same if an initial
exponential distribution were used for the diagonal elements.
The resulting distribution function forw'', however, is dif-
ferent in that case. The distribution function implied by Eq.
s49d for w'' at the next collision can be used to estimate the
Kolmogorov-Sinai entropy from Eqs.s8d and s30d. The in-
volvement of these expressions was already anticipated in
f11g by Dorfman, who predicted extra contributions toB of
ln 4 and ln 3 based on summations.

The approximation so far is fairly crude. The nonlinearity
of Eq. s28d has been partially neglected by using the aver-
ages of the off-diagonal elements. In the second term in the
calculation of the trace in Eq.s42d only the block diagonal
terms, those of the formv̂i j ' ·Wi

2·v̂i j ', are involved. In real-
ity, sinceW is symmetric, the terms involving off-diagonal
elements will also produce negative contributions to the av-
erage of the trace in Eq.s42d.
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A better approximation of the average value can be found
by iterating the equation for the distribution a second time.
The distribution ofRi ·Wkl8 Ri

T can be used to calculate the
trace ofW9. The colliding particles are uncorrelated before
the collision, but not independent of the particles they en-

countered before. These particles, which are not directly in-
volved in the collision, now contribute to the change in the
trace, through the second term on the right-hand side of Eq.
s42d. I find that ford=2 the trace in the low-density approxi-
mation satisfies

kTrsW9dl − kTrsW8dl

= − 3w̄ +Kf2n̄2sti
2 + 4tit j + t j

2d + 10n̄sti + t jdw̄ + 8w̄2 − 2w̄n̄sti cos2 f j + t j cos2 fid − w̄2scos2 fi + cos2 f jdg
f2n̄sti + t jd + 4w̄ − cos2 fi − cos2 f jg

L . s52d

This yields a result forw̄ that is significantly different from
Eq. s51d.

More iterations would produce more terms and will fur-
ther reduce the value found forw̄, converging to the exact
result. A similar but far more complicated expression can be
found ford=3 from Eqs.s42d ands45d and the general form
of the three-dimensional rotation matrix. The results would
improve if the distribution were iterated repeatedly, but this
would produce expressions of complexity increasing expo-
nentially with the number of iterations. One more iteration
would add four angles and four free-flight times to the ex-
pression in Eq.s52d. After the second iteration, the expres-
sion forw''9 is quite complicated and contains 12 correlated
variables, 6 rotation angles, and 6 free flights. Also, the sec-
ond iteration already produces a reasonable result. I therefore
continue using the distribution ofw''8 , but with the value of
w̄ found from Eq.s52d.

The integrations over the distributions offi, f j, ti, andt j
can be done numerically. The change in the trace is zero for

w̄1
s1d = H3.009 if d = 2,

2.107 if d = 3.
J s53d

The subscript index is introduced to indicate the weight
given to the off-diagonal terms.

3. Off-diagonal elements from earlier collisions

If the contributions to the trace from the off-diagonal el-
ements involving the other particles from the previous colli-
sions, through the second term on the right-hand side of Eq.
s42d, are ignored, the result is changed significantly. In this
case,

w̄0
s1d = H3.408 if d = 2,

2.639 if d = 3.
J s54d

At a collision betweeni and j , the off-diagonal elements
between particlesi andk produce significant changes to the
diagonal elements ofWkk8 . It is therefore expected that con-
tributions from particles involved in collisions before the
previous collision will also be significant. Also, if the other
particle from the previous collision of particlei has collided
since, this has an effect onWi.

At a collision between particlesq andr, the change in the
trace ofW, calculated in Eq.s42d, is affected by the elements
of W betweenq and r and other particles. After a collision
between two particles, nonzero off-diagonal elements exist
between these particles. After a collision betweeni and j ,
off-diagonal elements between particlesi andk generate off-
diagonal elements betweenj andk, due to the exchange be-
tween thedvi anddv j. If nonzero off-diagonal elements exist
betweeni andk as well asj and l before the collision, after
the collision nonzero elements will exist betweenk and l. A
diagrammatic representation of the collision sequence is
shown in Fig. 2.

In order to estimate how much such terms contribute to
the change in the trace at a collision involving particlek, the
typical magnitude of the off-diagonal elements at a collision
must be investigated. One may estimate the typical changes
in the off-diagonal blocksWik andW jk at a collision between
i and j , by estimating the changes in the trace of the off-
diagonal blocks. The typical size of the off-diagonal ele-
ments can be characterized by the trace of the off-diagonal
block Wik. The diagonal elements of the off-diagonal blocks
can be found from Eq.s43d. Using the fact thatWi j before
the collision is zero, one finds, in two dimensions, for the
elements ofW betweendr i anddvk,

v̂i j ·Wik8 · ê= v̂i j ·Wik · ê

−
sv̂i j ·Wi · v̂i j 'dfv̂i j ' · sWik − W jkd · êg

v̂i j ' · sWi + W jd · v̂i j '

,

s55d

v̂i j ' ·Wik8 · ê

=
1

2
v̂i j ' · sWik − W jkd · ê

−
fv̂i j ' · sWi − W jd · v̂i j 'gfv̂i j ' · sWik − W jkd · êg

2v̂i j ' · sWi + W jd · v̂i j '

.

s56d

Here, ê can be any vector in two dimensions. IfWik has
nonzero elements, thenW jk does not, since the particlesi and
j were uncorrelated before the collision. IfWik has nonzero
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elements after the collision, bothWik8 andW jk8 have nonzero
elements.

From Eq.s55d the traces after the collision may be found:

TrsWik8 d = v̂i j ·Wik · v̂i j −
sv̂i j ·Wi · v̂i j 'dsv̂i j ' ·Wik · v̂i jd

v̂i j ' · sWi + W jd · v̂i j '

+
1

2
sv̂i j ' ·Wik · v̂i j 'dF1 −

v̂i j ' · sWi − W jd · v̂i j '

v̂i j ' · sWi + W jd · v̂i j '
G ,

s57d

TrsW jk8 d = −
sv̂i j ·W j · v̂i j 'dsv̂i j ' ·Wik · v̂i jd

v̂i j ' · sWi + W jd · v̂i j '

−
1

2
sv̂i j ' ·Wik · v̂i j 'dF1 −

v̂i j ' · sWi − W jd · v̂i j '

v̂i j ' · sWi + W jd · v̂i j '
G .

s58d

It is fair to assume that the off-diagonal elements ofWik tend
to be smaller than the diagonal elements. Also, the diagonal
elements ofWi −W j are, typically, much smaller than the
diagonal elements ofWi +W j. The terms with a quotient of
these can therefore be neglected in this rough estimation.
Further, thed diagonal elements ofWik are typically of the
same size. These approximations leave us with the general
expressions

TrsWik8 d <
d + 1

2d
TrsWikd, s59d

TrsW jk8 d <
d − 1

2d
TrsWikd. s60d

In addition, if bothWik and W jl have nonzero elements,
Wkl8 also has nonzero elements, which are due to the second
term on the right-hand side of Eq.s43d. The off-diagonal
elements generated in this way are small compared to the
elements generated from Eqs.s59d ands60d. In fact, they are
smaller than the terms neglected from Eqs.s57d and s58d,
because they contain products of the off-diagonal elements
which are small compared to the diagonal elements. As they
appear quadratically in the change in the tracefsee Eq.s42dg,
they may be neglected, despite their quadratically larger
number.

From Eqs.s59d and s60d an estimate can be made of the
contributions to the change in the trace in Eq.s42d from
collisions before the previous collision, compared to the con-
tributions from just the previous collisions. The ratio be-
tween the total contributions from off-diagonal elements to
the change in the trace and the contributions from just the
previous collisions is denoted bya.

In every collision in the history, off-diagonal elements are
created between the two colliding particles and existing ele-
ments are reduced in magnitude and passed on according to
Eqs.s59d ands60d. In order to estimate the consequences of
Wqs at a collision betweenq and r ssee Fig. 2d, one has to
find the path through which information was passed on from
the collision between particlesx and y to the present colli-
sion betweenq and r as well as the path from the collision
betweenx andy to the particles at the time of the collision
betweenq andr, following a sequence of collisions, through
which the off-diagonal element between particlesq ands is
affected. To this path belongs an approximate reduction of
the size of the off-diagonal element, a product of factors of
sd+1d / s2dd or sd−1d / s2dd for each collision in the paths. If
the path continues with the same particle, there is a factor of
sd+1d / s2dd. If it switches to the other particle, the factor is
sd−1d / s2dd.

Every different product with the same number of factors
follows a different path of that length and hence belongs to a
different present particle. The product of the two factors of
two paths starting fromx andy gives the order of magnitude
of the off-diagonal element betweeni and k particles. The
square of this factor then gives the relative size of the con-
tribution to the trace at the collision betweeni and j . If a
collision between two particles is nowp collisions ago, then,
on average, the other part of the future of that collision has
also hadp collisions. Summing over all the different paths of
length p, one finds that the relative contribution from colli-
sions that occurredp collisions before the previous collision
can be approximated as

ap < Sd2 + 1

2d2 D2p

. s61d

Summing over allp gives the estimate

a = o
p

ap <
4d4

s3d2 + 1dsd2 − 1d
. s62d

The contributions from the previous collisions in Eqs.
s42d and s52d can be multiplied bya to find an estimate for
the total contribution of all particles with whichi and j have

FIG. 2. A diagrammatic representation of a series of collisions.
At the collision between particlesq andr, the off-diagonal elements
betweenq and particles contribute to the change in the trace. These
elements date from the collision between particlesx and y, in the
common history ofq ands. At some point in the past, there were
elements between a particlei in the history ofs and a particlek in
the history ofq when j , another particle in the history ofs, collided
with i. After the collision there were elements betweenj and k,
which, through more collisions, eventually lead to elements be-
tweens and q. The size of the elements betweens and q can be
estimated using Eqs.s59d and s60d.
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a common history. This is an admittedly crude estimate, yet
should give better results than just neglecting the history
before the previous collision. The terms in Eq.s52d that are
due to the off-diagonal block between the colliding particles
and other particles may be multiplied bya. With this correc-
tion it is found that

w̄a
s1d = H2.929 if d = 2,

1.947 if d = 3.
J s63d

The distribution function ofw'' contains an uncertainty
in its width, which affects the results of the calculation.
When starting from the average, with every next iteration of
the equation for the distribution function, the distribution be-
comes wider.w'' looks like a sum of several weighted free-
flight times for each particle. If one starts from exponentially
distributed diagonal elements, rather than simply the aver-
ages, the distribution becomes narrower with every iteration.
By starting from an exponential distribution, one may esti-
mate the consequences of the width of the distribution of the
elements. With an initial exponential distribution, one finds

w̄a
s1de = H2.426 if d = 2,

1.676 if d = 3.
J s64d

By substituting the distribution function induced by one
iteration, together with the average, into Eq.s8d one can now
estimate the Kolmogorov-Sinai entropy.

VI. RESULTS AND DISCUSSION

As the free-flight times are inversely proportional to the
density,w''t̄d−1 will be inversely proportional tond−1. This
leads to a general form for the Kolmogorov-Sinai entropy,

hKS = Nn̄Af− lnsnadd + Bg. s65d

In earlier calculationsf8g, A was calculated accurately. The
results forB, however, are unsatisfactory. The values ofA are
easily found from Eqs.s8d and s30d and the dependence of
the collision frequency onn,

A =
d − 1

2
. s66d

If w'' is taken equal tot+, the results forB of f8g are
reproduced,

h̃KS =
Nn̄

2
KlnFS2vi jt+

a
Dd−1

cosd−3 uGL . s67d

This yields

B̃ < H 0.209 if d = 2,

− 0.583 if d = 3.
J s68d

From molecular-dynamics simulations the Kolmogorov-
Sinai entropy has been calculatedf8,15g. It is found that

hKS
s = Hs0.499 ± 0.001dNn̄s− ln nad + 1.366 ± 0.005d if d = 2,

s1.02 ± 0.02dNn̄s− ln nad + 0.29 ± 0.01d if d = 3.
J s69d

In the calculation presented here, Eq.s67d has to be
amended, to become

hKS =
Nn̄

2
KlnFw''S2vi j t̄

a
Dd−1

cosd−3 uGL . s70d

From Eqs.s49d and s53d, one finds, after numerical integra-
tion, that

B1
s1d < H1.592 if d = 2,

0.476 if d = 3.
J s71d

If the contributions from the off-diagonal elements in Eq.
s42d are increased by the estimate of the remaining terms,
through a factor ofa, the results change to

Ba
s1d < H1.572 if d = 2,

0.427 if d = 3.
J s72d

This more closely reproduces the simulation results shown in
Eq. s69d.

After every extra iteration in the calculation, the distribu-
tion becomes wider and therefore the average of the loga-
rithm of w'' becomes smaller compared to the logarithm of

the average. Due to this, cutting off the process after two
iterations produces a result for the Kolmogorov-Sinai en-
tropy which is too high. Note that also a wider spread of the
off-diagonal elements leads to larger contributions from the
off-diagonal terms in Eq.s42d and therefore to a smallerw̄,
which yields a smaller value forB. Equations71d threfore
gives an upper bound forB.

By starting from a wider distribution of diagonal elements
instead of a product of Diracd functions, an estimate can be
made of the effects of the width of the distribution. From the
results of an exponential initial distribution, Eq.s64d, an es-
timation is found,

Ba
s1de < H1.370 if d = 2,

0.273 if d = 3.
J s73d

From these two estimated bounds, a final estimate ofB
may be made, including error bounds,

B = H1.47 ± 0.11 if d = 2,

0.35 ± 0.08 if d = 3.
J s74d

The errors could be reduced by using distribution functions
for w'' that have been iterated a larger number of times.
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The values of the Kolmogorov-Sinai entropy found in the
molecular-dynamics simulations, Eq.s69d, are well within
the error bounds of Eq.s74d.

VII. CONCLUSIONS

In this paper, an estimation using kinetic theory is pre-
sented of the Kolmogorov-Sinai entropy of dilute hard-
sphere gases in equilibrium. Kinetic theory has been applied
before to calculate chaotic propertiesf8,16,17g, such as the
Lyapunov spectrum of the high-dimensional Lorentz gas
f12g. In systems with escape, the Kolmogorov-Sinai entropy
has also been connected to transport coefficientsf18–21g, but
in the system investigated here, it is just equal to the sum of
the positive Lyapunov exponents. It is known that the lead-
ing orders are of the formNn̄As−ln n+Bd f8g.

A nonlinear integral equation was derived for the joint
distribution function of the elements of the inverse of the
radius of curvature tensor. This equation was approximately
solved by the use of an iterative method.B was estimated
from the solution in a satisfactory way, with results which
are consistent with simulation results. It was found thatB
=1.47±0.11 ford=2 and B=0.35±0.08 ford=3. The ap-
proximations made are systematic, and the results can be

further improved by performing more iterations of the distri-
bution. The values forB found in the present calculation are
in good agreement with the results from molecular-dynamics
simulations f15g. Also, an upper bound was found for
B—that is,B,1.592 ford=2 andB,0.476 ford=3.

The smaller Lyapunov exponents of this system are pro-
portional to n̄. The ones which are not due to Goldstone
modes contribute significantly toB in the Kolmogorov-Sinai
entropy. The calculation ofB presented here shows effects
which affect the behavior of these Lyapunov exponents to
the leading orderf22g.

It should be noted that effects such as the ones described
here do not affect the Lyapunov spectrum of the high-
dimensional Lorentz gas, calculated in Ref.f12g, because the
scatterers in that system are uniformly convex. However,
they are generic for the Lyapunov spectra of systems consist-
ing of many particles.
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