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Dynamic arrest is a general phenomenon across a wide range of dynamic systems including glasses,

traffic flow, and dynamics in cells, but the universality of dynamic arrest phenomena remains unclear. We

connect the emergence of traffic jams in a simple traffic flow model directly to the dynamic slowing down

in kinetically constrained models for glasses. In kinetically constrained models, the formation of glass

becomes a true (singular) phase transition in the limit T ! 0. Similarly, using the Nagel-Schreckenberg

model to simulate traffic flow, we show that the emergence of jammed traffic acquires the signature of a

sharp transition in the deterministic limit p ! 1, corresponding to overcautious driving. We identify a true

dynamic critical point marking the onset of coexistence between free flowing and jammed traffic, and

demonstrate its analogy to the kinetically constrained glass models. We find diverging correlations

analogous to those at a critical point of thermodynamic phase transitions.
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Dynamic arrest, the sudden slowing down of dynamic
systems with increasing density or interaction potential, is
a central phenomenon in complex systems across biology,
geology, material science, transport, and traffic. The dy-
namic arrest is important for material stability and mem-
ory, but it is rather detrimental in traffic or transport, where
congestion freezes any motion. A much studied example
of dynamic arrest is the glass transition, i.e., the sharp
increase of the viscosity of glass forming liquids. Many
more systems exhibit similar dynamic arrest phenomena
that appear to be related. An example is that of traffic flow:
similar to the atomic motion in a glass, cars slow down and
eventually arrest at high density due to crowding. While
the similarity between different arrest phenomena has been
pointed out, it is not clear to what extent they really are
related.

A possible unifying scheme is that of a dynamic phase
transition, in which the dynamic slowing down is consid-
ered to be analogous to an equilibrium phase transition
with its singularities in thermodynamic quantities. The
central question, then, concerns the universality of the
dynamic arrest. While signatures of dynamic phase tran-
sitions have been obtained in a few examples, the connec-
tion between these systems remains unclear, but would
provide an important step to establish evidence of the
universality of the dynamic arrest. In this Letter, we aim
to address this issue by demonstrating the presence of a
dynamic critical point in a simple model for traffic flow,
and connecting it to the dynamic slowing down of glasses.
By doing so, we establish a direct analogy between dy-
namic traffic flowmodels and the dynamics of glasses, thus
highlighting universal aspects of dynamic arrest.

Important insight into the dynamic arrest of glasses
comes from kinetically constrained models (KCMs), a
class of discrete models with stochastic dynamics that are
used to describe the glassy behavior and increasing

relaxation time scales in supercooled liquids [1]. As the
defining ingredient, KCMs have a kinetic constraint that
allows local activity only if a local condition is met. These
models provide some evidence that indeed the dynamic
slowing down is the manifestation of a dynamic critical
point [2,3] in the limit T ! 0.
A constraint that is directly analogous to those in KCMs

exists in traffic flow: cars can accelerate only if the distance
to the car in front is sufficiently large. A well-studied
model that incorporates a number of basic dynamic prop-
erties of real traffic is the Nagel-Schreckenberg (NS)
model [4], a lattice-gas-like model with discrete position,
time, and velocity. It allows stochastic fluctuations in the
velocities of the individual cars, controlled by the proba-
bility p that reflects the drivers’ individual freedom to
adjust their speed. The NS model describes the formation
of traffic jams, and there has been much discussion regard-
ing the (non)existence of a sharp phase transition between
free-flowing traffic and traffic with jams [5–7]. There are a
number of other models that describe traffic flow more
realistically, including some that are extensions of the NS
model [8,9]. Here, however, we focus on the most basic
version of the NS model to draw a direct connection to the
dynamics of glasses. We demonstrate that already this
simple one-dimensional model exhibits a true dynamic
critical point in a deterministic limit that is analogous to
the limit T ! 0 of glasses. The key in the correspondence
is the kinetic constraint, both present in KCMs of glasses
and in all models of traffic in which collisions are avoided.
We consider the deterministic limit p ! 1 where cars

tend to decelerate [10], and demonstrate a nontrivial dy-
namic phase transition from free flow to coexisting free
flow and jammed traffic. By applying dynamic correlation
functions and susceptibilities normally used for glasses [2],
we show that at the onset of dynamic phase coexistence,
the maximum correlation length and time diverge,
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analogous to the dynamic transition in KCMs at T ! 0.
These simple stochastic dynamic systems allow for a direct
comparison of dynamic arrest in different dimensions. We
identify observables in traffic that behave similarly and that
relate to each other in the same way as in glasses. The
beauty of these results lies in the fact that the relatively
simple NS model of traffic shows a true dynamic phase
transition that is surprisingly analogous to that of glasses.
This signals some degree of universality of the dynamic
arrest.

The NS model simulates traffic flow in discrete space
and time. A fixed number of cars with average density �
per lattice site are positioned on a one-dimensional lattice
with periodic boundary conditions. The cars have integer
velocities vi between 0 and some maximum velocity vmax.
The dynamics is given by the following update rules
applied in parallel to all cars: all cars i with velocity
vi < vmax accelerate by 1. Next, the kinetic constraint is
applied, so that, if the distance of car i to the next car
di < vi, then car i decelerates to di. With probability p, a
car reduces its velocity by 1. This parameter is the only
source of stochasticity in the system and controls the
velocity fluctuations. Finally, all cars move along the
road by vi lattice sites. In our simulations, we have propa-
gated 214 ¼ 16384 cars under periodic boundary condi-
tions. Near p ¼ 1, where averages converge slowly, a
steady state was produced by propagating the system for
5� 107 time steps. Averages were calculated over a further
5� 108 time steps.

We give an overview of the traffic flow in the NS model
in Fig. 1, where we show the average velocity hvi as a
function of � and p for vmax ¼ 2. Traffic exhibits free flow
at low density, where hvi ¼ vf � vmax � p, the velocity of

free flow. With increasing density, cars interact and decel-
erate according to the kinetic constraint, leading to the
formation of jams that coexist with free flow, and a con-
comitant decrease of hvi. Here, a car is defined as being
jammed if it has a velocity of zero. The transition density

�tra between free flow and traffic with jams can be
estimated from the balance of the outflow and inflow rates
of a jam, as required for its stability [11]: the outflow rate
of a continuous sequence of jammed cars is 1� p, corre-
sponding to the probability of acceleration of the car at
the head of the jam. Because cars approach the rear
of a jam with average velocity vf ¼ vmax � p, and the
rear of the jam itself travels backwards at a speed equal
to the inflow to outflow rate, this yields the transition
density [11]

�tra ¼ 1� p

vmax þ 1� 2p
; (1)

which reduces to �tra / 1� p for small 1� p. We use this
relation to rescale the density near p ¼ 1.
How does the jammed regime emerge from that of free

flow? For glasses and KCMs [3,12,13], it has been shown
that the dynamic arrest becomes singular at T ¼ 0, where
the dynamics becomes deterministic. The question is then
whether a similar singular transition exists in the simple
traffic flow model at �� �tra. To explore this analogy, we
relate the stochasticity parameter p to the temperature T of
spin glasses. The case T ¼ 0, where the dynamics of
glasses freezes entirely, corresponds to the case p ¼ 1,
where cars always decelerate, and traffic flow arrests. In
the limit of T ! 0 and p ! 1, the systems become
deterministic.
A characteristic property of the glass is its dynamic

heterogeneity. Dynamically active regions separate from
dynamically less active regions in space and time, leading
to increasing dynamic heterogeneity of the system. This
dynamic heterogeneity is quantified by the dynamic sus-
ceptibility [2,14,15]. In analogy, we define the dynamic
correlation function of traffic flow using

G4ði; tÞ ¼ hcði; tÞcð0; tÞi � hcð0; tÞi2; (2)

where we take the mobility of car i as cði; tÞ ¼
½1=ðtþ 1Þ�Pt

t0¼0 viðt0Þ, its average velocity during the

time interval ½0; t�. We find that near p ¼ 1, dynamic
correlations become indeed increasingly long ranged
when the density approaches �tra. To investigate this in-
crease in the correlation length, we define the dynamic
susceptibility

�4ðtÞ ¼ 1

hv2i � hvi2
XN�1

i¼0

G4ði; tÞ; (3)

that measures the number of cars that move cooperatively
on the time scale t. The dynamic susceptibility �4 indicates
the size of regions of correlated mobility, and has been
much used to measure dynamic heterogeneity in glasses
and granular materials [16–19]. While in glasses, maxi-
mum cooperative motion arises at intermediate time scales,
at which the particles escape their cages, in traffic,
cars cannot escape the crowding of their environment
independently of each other, and the maximum dynamic
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FIG. 1. Phase diagram of the Nagel-Schreckenberg model
showing hvi for the case of vmax ¼ 2 (see gray scale on the
right). The dashed line marks the transition between freely
flowing traffic and traffic with jams shown in Eq. (1).

PRL 109, 228001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

30 NOVEMBER 2012

228001-2



susceptibility arises at the shortest time interval, see inset
of Fig. 2(a). To explore the growth of correlations, we
focus on t ¼ 0, and show �4ðt ¼ 0Þ as a function of density
in Fig. 2(a). Indeed, increasing maxima develop at �� �tra

as p approaches unity, indicating increasing dynamic cor-
relations. The divergence of the dynamic susceptibility is
clearly seen in Fig. 2(b), where we plot the maximum value
of �4 as a function of 1� p. The figure shows data for
various vmax; in all cases, the maximum of �4, �4;max /
ð1� pÞ��, indicating that the number of cars that move
cooperatively diverges. In the NS model, the exponent
appears to increase weakly with vmax changing from � ¼
0:53 to � > 0:70. This divergence indicates that traffic flow
becomes truly critical in the limit p ! 1. The divergence is
analogous to the one observed in KCMs at T ! 0, and
indicates that the deterministic limits p ! 1 and T ! 0,
are dynamic critical points of the systems. The divergence
occurs at the onset of the jammed regime; to show this, in
Fig. 2(c), we compare the location of the maximum of �4

(symbols) with the limiting (p ! 1) behavior of �tra

according to Eq. (1) (dashed lines).
Further evidence of critical behavior comes from mea-

surement of the correlation time scale. To estimate the
typical persistence time scale, we make use of a quantity
similar to �4, where we interchange time and car index in
the definition of cði; tÞ and in the sum appearing in (3), to
obtain #4ðiÞ. The temporal susceptibility #4 indicates the
correlation time scale of the system, and measures the
typical residence time of a car in a jam. We plot this
correlation time as a function of reduced density in
Fig. 3. A strong increase of the maximum of #4 suggests
that in addition to the divergence of the correlation length,
there is also a divergence of the correlation time scale. This
is confirmed by plotting the maximum values of #4 as a
function of (1� p) in the inset. Similar to the spatial
correlations, the correlation time scale diverges as a
power law #4;max ¼ ð1� pÞ�� as p ! 1, confirming that

the system behaves critically along the time dimension.
We determine the exponent to be �� 1:5. For real traffic,
such diverging correlation time can have unpleasant

FIG. 3. Residence time of cars in jams as a function of reduced
density for various values of p at vmax ¼ 2. As p ! 1, the
correlation time becomes more sharply peaked. Inset:
Maximum residence time as a function of 1� p shows power-
law divergence of the correlation time for p ! 1.

FIG. 2. Dynamic susceptibility of traffic flow in the NS model.
(a) The value of �4ð0Þ as a function of rescaled density for a
range of probabilities p at vmax ¼ 2. The peak sharpens mark-
edly as p ! 1. Inset: �4ðtÞ as a function of time shows that the
largest value occurs at t ¼ 0. (b) Maximum value of �4ðt ¼ 0Þ as
a function of the rescaled density, plotted vs 1� p, for a set of
vmax [symbols explained in (c)]. Power-law behavior (dashed
lines) indicates the divergence of the dynamic susceptibility on
approach of the critical point p ¼ 1. (c) Density of maximum
dynamic susceptibility as a function of 1� p for various values
of vmax. The position of the maximum is well described by the
limiting behavior of (1), �tra ¼ ð1� pÞ=ðvmax � 1Þ indicated by
the dashed lines.
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consequences, as it indicates diverging persistence
times of traffic jams.

We thus find a dynamic critical point characterized by
diverging length and time scales. This critical point sepa-
rates free flowing traffic from coexisting free flowing
traffic and jams. This situation appears to be similar to
equilibrium phase transitions, where the coexistence of
phases is terminated by a critical point. To explore this
analogy, we monitor the length of jams as a function of
time, and find that indeed in the limit p ! 1, jams always
coalesce in time to form a single jammed phase, coexisting
with a single free flowing phase, analogous to the coarsen-
ing of equilibrium phases.

We explore this analogy further by defining the dynamic
order parameter [20]

M ¼ vf � hvi
vf

; (4)

the normalized deviation of the average velocity from that
of free flow. We show M as a function of the rescaled
density in Fig. 4. It exhibits an increasingly sharp kink as
p ! 1, but remains continuous at the transition � ¼ �tra,
indicating a singular point in the limit p ! 1. If we assume
simple coexistence in the two-phase regime, we can predict
the function Mð�Þ ¼ ð�� �traÞ=�, which we indicate as a
dashed line in Fig. 4. Indeed as p ! 1, there is strong
evidence that the data converge to this simple function,
supporting our picture of jam and free flowing traffic as
coexisting phases. The functional dependence of this order
parameter has an exponent� ¼ 1, corresponding to a Bose
condensate, and to condensates found in typical zero range
models [21].

The dynamic phase transition we have described is
analogous to that of directed percolation, as also indicated
by Ref. [12], describing the transition at which an active
(here: jammed) phase begins to permeate the entire system.

At this stage, however, we are not prepared to say that the
phase transition is in the universality class of directed
percolation, in the sense that the critical exponents are
the same. The apparently nonuniversal behavior of the
exponent � may indicate a more complex situation.
We have shown that the simple one-dimensional Nagel-

Schreckenberg model for traffic flow already exhibits hall-
marks of a dynamic phase transition analogous to that of
kinetically constrained models for glasses. Exploiting this
analogy, we have identified a dynamic critical point in the
deterministic limit p ! 1 and � ! 0, marking the onset of
coexisting jammed and free flowing traffic. The hallmark
of this transition is the divergence of both correlation
length and time scales, giving it a second order character.
By defining a proper dynamic order parameter, we have
shown that this transition is analogous to equilibrium phase
transitions in which the coexistence regime is entered
through the critical point. The direct analogy to KCMs of
glasses points out the universality of dynamic arrest phe-
nomena in systems of different dimensionality. Our results
thereby offer a general scheme to comprehend dynamic
arrest phenomena to be tested in other systems as well.
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