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Abstract
We study the effects of temperature and sliding velocity on superlubricity in numerical
simulations of the Frenkel–Kontorova model. We show that resonant excitations of the
phonons in an incommensurate sliding body lead to an effective friction and to thermal
equilibrium with energy distributed over the internal degrees of freedom. For finite
temperature, the effective friction can be described well in terms of a viscous damping force,
with a damping coefficient that emerges naturally from the microscopic dynamics. This
damping coefficient is a non-monotonic function of the sliding velocity which peaks around
resonant velocities and increases with temperature. At low velocities, it remains finite and
nonzero, indicating the preservation of superlubricity in the zero-velocity limit. Finally, we
propose experimental systems in which our results could be verified.

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent developments in surface scanning probes have
stimulated a large interest in understanding and using the
phenomenon of friction at the nanoscale [1, 2]. One of the
most fascinating aspects of this field is the possibility of
superlubricity, namely the possibility of sliding two surfaces
onto each other with vanishingly small friction. Several
experiments report such a low friction state [3–5]. The
crucial ingredient of this phenomenon is the geometrical
incommensurability of the sliding crystal faces. Other aspects
like roughness of the sliding surfaces [6] and electronic
excitations during sliding [7] are not discussed here. The
key model for studying incommensurate systems is the
Frenkel–Kontorova model (FK-model) [8] (shown in the top
panel of figure 1), which describes a chain of atoms with
period a on a potential profile with period b. The case
where the ratio b/a is not a rational number identifies an
incommensurate system with no finite global periodicity.

Aubry has shown that a structural transition occurs at a
critical coupling λc of the chain to the substrate potential [9,
10]. Below this critical coupling, the static friction vanishes

because, while moving, the atoms of the chain always explore
all possible positions on the substrate and thereby average
out the effective corrugation and resulting friction force. One
of the empirical laws that describes macroscopic friction
states that kinetic friction is lower than static friction [1].
Therefore it is important to establish whether vanishing static
friction does indeed imply vanishing kinetic friction also
at the nanoscale. In the paper where they coined the term
superlubricity, Shinjo and Hirano [11] studied the kinetic
contribution to friction in the FK-model and proposed a
phase diagram (bottom panel figure 1) with a frictional and
a superlubric region as a function of the coupling λ and the
velocity of the centre of mass of the chain. In the superlubric
regime, once in motion, the chain would slide indefinitely
without any kinetic friction but with a recurrent exchange
of kinetic energy between the centre of mass (CM) and a
single internal mode related to the periodic modulation due
to the substrate. According to their findings, by increasing
the velocity of the chain for weak coupling (λ < λc, no static
friction), namely along a vertical line in the phase diagram of
figure 1, the system would first acquire friction and then go
back to a superlubric state at higher velocities. The proposed
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Figure 1. Top panel: a schematic overview of the
Frenkel–Kontorova model. A chain of harmonically coupled
particles are subjected to a periodic potential. Bottom panel: a
sketch of the proposed phase diagram by Shinjo and Hirano
(adapted from [11]). As the initial CM velocity is increased along
the dashed line, the system supposedly first undergoes a transition
from zero static friction (λ < λc) to kinetic friction and then goes to
a superlubric state. Our results do not support this picture.

behaviour implies a surprising sudden change to a frictional
state as soon as the system is set into motion.

This result was later criticized [12], by showing that
the initial superlubric behaviour is destroyed with time,
since the recurrent oscillation of the CM gives rise to the
resonant parametric excitation of acoustical, long wavelength,
vibrations in the chain. This phenomenon leads to a high
friction regime where all the initial kinetic energy of the
CM is eventually converted into internal motion that can
be interpreted as heat. The resonant excitation of acoustical
modes is however weaker at lower velocities and goes
naturally towards the vanishing friction of the static limit.
This result agrees well with the fact that most experimental
observations of quasi-vanishing friction have been at the
extremely low velocities of atomic force microscopes (AFM),
of the order of µm s−1. Indeed, the term superlubricity is
currently used to indicate in general a low friction sliding
rather than in the original meaning of [11].

Here we study how superlubricity is affected by
temperature and velocity. First we show that the dynamical
mechanism identified in [12] leads to a system in thermal
equilibrium that satisfies energy equipartition over the internal
vibrations, yielding a well defined temperature. We then
show that at finite temperature the system displays a damped
dynamics that allows one to calculate the damping coefficient
from the microscopic description rather than by assuming
its presence phenomenologically. We find that this damping
is not a monotonic function of the sliding velocity, as it
peaks close to specific phonon resonances. Away from these
resonances and particularly in the limit of low velocity, the

effective damping is finite, and thus at low velocities the
friction vanishes, preserving superlubricity.

The paper is organized as follows. In section 2 we
describe the model and its dynamics. In section 3 we review
how kinetic friction arises and show how the system evolves
into thermal equilibrium. In section 4 we show that, at thermal
equilibrium, friction can be described as a viscous damping
that can be calculated from the model. We also compare our
results against damped driven models [13]. In section 5 we
suggest experimental systems that could confirm the results
presented in this paper and in section 6 we summarize our
findings.

2. The model: geometry and dynamics

The FK-model [8] consists of a harmonic linear chain of
particles of mass m with period a0, subjected to an external
periodic potential with period as and amplitude U0/2π . The
spring constant, between the particles, is K. The ratio of the
depth of the potential to the spring constant of the chain
defines a coupling parameter: λ ≡ U0/(Ka2

s ). In the context
of friction the particles represent the atoms of a sliding body
and the potential represents a rigid solid substrate. The model
is depicted schematically in the top panel of figure 1.

If the ratio of the parameters a0/as is an irrational
number, the system is called incommensurate; otherwise the
system is called commensurate. The incommensurate case is
the most interesting, because for two arbitrary surfaces in
contact a common periodicity is not likely.

The ground state is determined by the competition of the
harmonic interaction between the particles and the interaction
of the particles with the periodic substrate, which is controlled
by λ. For incommensurate systems there exists a structural
phase transition [9, 10]: for λ < λc the system is in a so called
floating phase and there is no static friction; if λ > λc the
system is in the pinned phase and exhibits static friction. The
value of λc is largest when the ratio between the length scales
is equal to the golden mean, τg: a0/as = τg = (1+

√
5)/2 =

1.618 033 989 . . . [14], for which λc = 0.1546 . . . [15]. In the
numerical implementation, one may approximate the golden
mean by a ratio of successive Fibonacci numbers, τg =

limn→∞Fn+1/Fn. Here, all calculations are done for n = 12,
i.e. N = 144 particles are distributed onto 233 periods of the
substrate potential.

The model can be enriched by considering the dynamics
of the particles [11, 12]. We include the kinetic energy of
the particles by defining τ = t/τ0, where t is the time and
τ0 ≡

√
m/K. If we express all energies in units of Ka2

s , times
in units of τ0 and lengths in units of as, the Hamiltonian of the
system becomes

H =
N∑

i=1

[
1
2

(
dui

dτ

)2

+
1
2
(ui+1 − ui − a0)

2

+
λ

2π
(1− cos(2πui))

]
, (1)

where ui is the position of particle i of the chain with
the periodic boundary condition ui+N = ui. The resulting
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Table 1. For each resonance n we give the initial velocity per particle p0. The τ -range gives the time range in which the probability density
function of P and the averages of the phonon amplitudes have been calculated. The absolute value of the averages (µ) of the Gaussian fits of
the histograms of P is given in the fourth column in units of 10−4as/τ0. These are a measure of the deviation of the system from a perfect
thermal equilibrium. The last three columns are the temperatures obtained from the initial kinetic energy (Teq), the distribution of P (TCM

eq )

and the phonon modes (Tphon
eq ).

n p0 (as/τ0) τ -range (τ0) |µ| Teq (λ) TCM
eq (λ) Tphon

eq (λ)

1 0.2966 (5–405)× 104 6.5 ± 2 0.88 0.89 ± 0.01 0.91 ± 0.04
2 0.1075 (25–425)× 104 1.5 ± 0.7 0.12 0.13 ± 0.01 0.13 ± 0.01
3 0.046 92 (4–16)× 106 3.1 ± 1 0.022 0.026 ± 0.002 0.030 ± 0.004
4 0.079 27 (4–8)× 106 2.0 ± 0.7 0.063 0.055 ± 0.002 0.074 ± 0.004

equations of motion can be written as a dynamical system of
2N first-order ordinary differential equations:

dui

dτ
= yi, (2)

dyi

dτ
= ui+1 + ui−1 − 2ui − λ sin(2πui). (3)

We solve these equations numerically by using the
fourth-order Runge–Kutta (RK) method with a time step of
τ0/150 and calculate also the position Q = (1/N)

∑N
i=1ui

and velocity P = (1/N)
∑N

i=1yi of the CM. As the system
is Hamiltonian (no heuristic damping) the total energy is
conserved. Nevertheless, energy can be transferred from the
centre of mass to the internal degrees of freedom, leading to
the arrest of the chain in time. This effect can be interpreted
as an effective friction.

If there is no coupling between the chain and the
substrate, λ = 0, the dispersion relation of the phonon modes
is that of a harmonic chain, ωk = 2|sin(k/2)|, with ωk the
frequency of the phonons and k = 2π i/N the wavevectors, in
which i ∈ (−N/2,N/2]. When all the particles move with the
same velocity p0, the atoms slide over the periodic potential
with the washboard frequency � = 2πp0. Strong resonances
occur if � is close to the frequency of the phonon mode with
the wavevector q = 2πa0/as or to its harmonics nq, multiples
of the wavevector q. If λ is small, these frequencies can be
approximated by the frequencies ωnq of the phonons of the
harmonic chain. The resonance phenomenon therefore occurs
for CM velocities [13, 12]

np0 ∼
ωnq

2π
n ∈ N n ≥ 1. (4)

When these resonances occur, after an initial recurrent
energy exchange [11, 12], the CM translational kinetic energy
is eventually totally transformed into internal kinetic and
potential energy of vibration in the chain. This energy transfer
occurs because the CM motion with velocity P induces a
modulation with the washboard frequency � that leads to
parametric resonances with exponential growth of phonon
modes with wavevector k whenever [13, 12, 17]

� '
ω(k)+ ω(mq− k)

m
(5)

for some integer m. From the above relation, one
can derive a maximum value Pmax = �max/(2π) =
4|cos(πτg/2)|/(2π) ≈ 0.5254. Above this value, the transfer

of energy from the CM to the phonons is blocked and the
motion would be really superlubric.

Lastly we note that, although the total energy is
conserved, entropy increases when the energy is dispersed
over the large number of internal degrees of freedom of the
chain. Finite systems can show temporary decreases in the
entropy, and, in principle, due to Poincaré recurrence, the
system could return close to the initial state with all energy in
the CM momentum. In practice, however, for systems with a
sufficiently large number of internal degrees of freedom, such
a large decrease in entropy is highly improbable and occurs
only on extremely long timescales. Indeed, we have never
observed this reversal in the length of our simulations.

3. Dissipation leading to thermal equilibrium

In this section, we show the evolution of the CM velocity P
for initial velocities close to the first four resonances ωnq and
show how this process leads to thermal equilibrium. We take
λ = 0.05 ≈ λc/3 for which there is no static friction, namely
we consider values of P on the vertical dashed line in figure 1.
For the initial positions of the particles we take a ground state
of the system, calculated by minimizing the potential energy.
We give all the particles the same initial velocity in order to
have the CM velocity P equal to the velocity corresponding to
the first four resonances (table 1).

In figure 2 we show the time evolution P(τ ) for the
second resonance. We see an initial oscillatory phase, enlarged
in the inset of figure 2(a), where P periodically goes back to
the initial value. After some time this recurrence mechanism
breaks down and P decays with time. This effect, the onset
of friction, was not reported in [11], possibly because of the
use of a too small number of particles or too short integration
times [12]. The mechanism for this behaviour, parametric
excitation of acoustic phonons, has been analyzed in [12]. A
similar behaviour has also been found for sliding concentric
nanotubes [16].

When the decay has finished, P jiggles around 0. From
figure 2(c) we see that the CM kinetic energy has been
transformed into equal amounts of kinetic and potential
energy as expected classically for vibrations, a first indication
that the system has reached thermal equilibrium. For the other
resonances, the evolution of P in time is qualitatively similar
but with different timescales: the higher the order of resonance
the longer the time before the start of the decay of P. For the
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Figure 2. Time evolution of the system for the second resonance. (a) P as a function of τ in the region in which P decays with time. The
inset shows the initial recurrent mechanism. (b) Probability density function of P from data for the P–τ evolution (points) and the Gaussian
fit of this function (line). (c) E as a function of τ for the second order of resonance. The total kinetic energy and the increase in potential
energy relative to the minimum configuration are shown. The dashed vertical line (red) is the time at which equipartition is reached. (d) The
amplitudes of the phonon modes 〈x2

k〉 as a function of mode number k for the second order of resonance. The data points are plotted in green
and the fit according to 1/ω2

k is in blue. The deviation of the 1/ω2
k behaviour around k = 55 = −q is due to the approximated

incommensurability of the system. For the time ranges used for averaging in (b) and (d), see table 1.

fourth resonance, we had to use a slightly perturbed ground
state to speed up this process. The increasingly long time that
it takes for the parametric growth of the phonon excitations
to lead to friction makes it very difficult to study numerically
the low velocity limit. We cannot rule out superlubric motion
at very low velocities where the parametric growth of internal
vibrations could either occur on timescales too long for the
simulations or not occur at all. Notice that these results do not
support the phase diagram [11] reported in figure 1.

If, after the decay of P, the system has reached thermal
equilibrium, equipartition should apply, namely the initial CM
kinetic energy should be distributed over the N oscillators,
each having kBTeq. We use two independent methods to
ascertain whether this is the case.

At thermal equilibrium, the probability density function
of P(τ ) should be described by a Maxwell–Boltzmann (MB)
distribution. In one dimension, the MB distribution coincides
with a Gaussian distribution around 0, with variance σ 2

=

kBTCM
eq /M, where M = Nm is the mass of the chain, kB

is the Boltzmann constant and TCM
eq is the equilibrium

temperature. We calculate the probability density function
from a normalized histogram of P, divided into 100 uniform
bins, in the time interval in which P jiggles around 0. The
result, shown for the second resonance in figure 2(b), is indeed
described well by a Gaussian with mean µ = 1.5×10−4 as/τ0
and variance σ 2

= 4.5×10−5 a2
s/τ

2
0 . The estimated values for

the equilibrium temperature are given in table 1.
Another estimate for the temperature can be given by the

amplitudes, xk, of the phonon modes [17]:
∑N

k=1
1
2 mω2

k 〈x
2
k〉 =

1
2 kBTphon

eq , where the brackets denote a time average and

Tphon
eq is the equilibrium temperature corresponding to the

distribution of the phonon amplitudes. In figure 2(d) we show,
for the second resonance, that the amplitudes of the phonon
modes are proportional to 1/ω2

k as expected at equilibrium.
The behaviour of the distribution of P and the phonon

modes is qualitatively the same for the other resonances. In
table 1 we compare the temperatures Teq with the values
obtained from the distribution of P,TCM

eq , and from the phonon

amplitudes, Tphon
eq . In order to define high and low temperature

regimes, all temperatures are given in units of the value of
λ used in this work, 0.05. In this way we can distinguish
high (T ≈ 1 λ) and low temperature (T � 1 λ) regimes.
In the next section, we also study the generic value T =
0.16 λ, between the first and second resonance, for which the
distribution of P was checked and found to be a Gaussian.
The agreement between the different estimates demonstrates
that the system has reached thermal equilibrium in the studied
range of velocities around the first four resonances.

4. The emergence of viscous damping

After the system has reached thermal equilibrium, as
described in the previous section, we give the CM an initial
velocity P(τ = 0) and study how it evolves with time. If the
friction is purely viscous, Ffric = −ηMP, as is often assumed
in the study of frictional dynamics [13, 18, 19], the sliding
velocity decays exponentially with time with a timescale
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Figure 3. Illustration of the method adopted for calculating η. The
evolution of 〈P(τ )〉 with respect to time after the addition of a
velocity p+ = 0.09 to all the particles for T = 0.88 λ, averaged over
500 initial configurations chosen with a spacing in time of 2000 τ0
from the trajectory starting from the first resonance, with
T = 0.88 λ. The fit is an exponential function,
〈P(τ )〉(as/τ0) = 0.0923 exp(−ητ) with η = 0.001 94(1/τ0).

determined by the friction coefficient η. This type of viscous
behaviour can be expected on general theoretical grounds for
many-particle systems [20, 21].

We start from initial conditions obtained by choosing
many (typically a hundred) configurations of the system in
thermal equilibrium at temperature Teq in the τ -range given in
table 1. We increase the CM velocity P by adding a uniform
initial sliding velocity p+ to all the particles. The systems
are then evolved with time and the time dependence of the
averaged CM velocity 〈P(τ )〉 is obtained by averaging over
all initial configurations. This averaging is necessary as, in
such small systems, fluctuations are large. In figure 3 we show
〈P(τ )〉 for p+ = 0.09 as/τ0, averaged over 500 configurations
at T = 0.88 λ. The average CM velocity decays exponentially,
〈P(τ )〉(as/τ0) = 0.0923 exp(−ητ) with a friction coefficient
η = 1.94× 10−3(1/τ0).

In this system, it is the microscopic dynamics that
give rise to the friction and determine the value of
the friction coefficient, without the need for imposing
a phenomenological friction term. A related result for
damping of phonon modes in relation to thermostats in
crystalline materials was obtained and tested in the context
of friction [22].

The time range used for the calculation of η needs to
be not too short because of the reliability of the fit, nor too
long because of the change of temperature of the system
which occurs during the time range. We choose for the high
temperature case, the time range τ = 0 − 500 τ0 and for the
low temperature case, the time range τ = 0 − 1000 τ0, for
determining η and its error bar. Therefore, we do not consider
the effect of different time ranges for the fit, although we
have checked that the behaviour of η remains qualitatively the
same.

The behaviour of η as a function of the sliding velocity is
shown in figure 4. For all T , in the limit p+ → 0, η becomes
constant (as indicated by the arrows in figure 4), implying

Figure 4. η as a function of p+ for different temperatures: (a) the
high temperature case, T = 0.88 λ, and (b) the low temperature
cases. The vertical dashed lines are the values of p+ corresponding
to the first four resonances (equation (4)). The peak resulting from
the resonance broadens at higher temperatures. Each friction
coefficient was obtained from averaging over at least 100 initial
configurations separated by 2000 τ0 in time. η has been obtained
from τ = 0–500 τ0 in (a) and from τ = 0–1000 τ0 in (b).

that the viscous friction, Ffric, goes to zero and superlubricity
is conserved. The same conclusion has been drawn in [23]
for the Tomlinson model. The friction coefficient η grows
with temperature. This is not surprising, because thermal
fluctuations distort the incommensurate contact between the
surfaces. It is known that friction decreases with temperature,
particularly in the stick–slip regime [24, 23] where the ‘slips’
from one minimum of the potential energy to the other can be
activated by thermal energy. The attempt frequency of these
processes is determined by the damping η, which is usually
taken to be temperature independent.

The vertical dashed lines in figure 4 are the velocities
corresponding to the first four resonances of the system
(equation (4)). For the high temperature case in figure 4(a),
the friction coefficient has a peak at frequencies just above
the first resonance, ωq, and no pronounced features at
the lower three resonances. For the low temperature case,
figure 4(b), the influence of the lower resonances on the
friction characteristics becomes apparent. Again the peaks
in η are shifted to the right. In addition, the influence of
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temperature on the broadening of the peaks is visible: the
higher the temperature, the broader the peak. For the lowest
resonance studied, the fourth, there is no clear peak of η at any
of the temperatures studied, whereas for the third resonance it
can be seen at the lowest temperature studied. Nevertheless,
at sliding velocities near the resonances, superlubricity is
suppressed for all temperatures.

In section 2 we have shown that at T = 0 there is
a maximum resonance velocity, Pmax ≈ 0.5254. For initial
velocities sufficiently far above this value, there can be
no effective damping at T = 0. At finite temperature,
thermal fluctuations distort the incommensurate geometry,
and nonzero effective damping can still exist even for high
velocities. We have indeed observed a slow decay of velocity
in our simulations at p+ = 0.75 and T = 0.88 λ.

Our results can be compared to the velocity–force
characteristics calculated by Strunz and Elmer [13] for
a driven and damped FK-model at T = 0. The inherent
friction in their system, calculated by subtracting the imposed
damping term from the total force, shows an effect of the
resonances similar to our results of figure 4. A difference
between our results and those of Strunz and Elmer is the
location of the peaks in the friction characteristics. In [13]
these peaks are situated at the values of the resonances
calculated from equation (4), while in our situation the peaks
are shifted towards higher values of the sliding velocity.
A possible explanation for this shift towards the right in
our undamped case is the influence of the use of the
approximation λ = 0 for the resonances equation (4). Indeed,
for smaller coupling, λ = 0.005 and T = 8.8 λ, we have
observed a smaller shift for the first resonance.

Also Strunz and Elmer used this approximation, but they
studied the so called uniform sliding state in a damped system,
whereas we solve the full dynamics. Our results confirm the
influence of the resonances on the friction found in [13], and
show that this aspect of the model is not limited to T = 0 or
to uniform sliding states of a damped driven system.

5. Estimates of parameters

Our 1D model is highly simplified and focuses on
the geometrical incommensurability which is essential
for superlubricity. In real systems, other aspects like
roughness [6] and electronic friction [7, 25, 26] may also play
a role. Nevertheless, we attempt to find possible experimental
situations in which our results could be confirmed. An
example of a well studied system with incommensurate
contacting surfaces is a layer of Xe atoms sliding on an
Ag(111) substrate [26–28]. The ratio between the lattice
parameters of the Xe monolayer and the substrate is a0/as =

(4.55 × 10−10 m/2.892 × 10−10 m) = 1.57 ≈ τg. The mass
of the Xe atoms is m = 2.16 × 10−25 kg. The spring
constant between the Xe atoms can be obtained from a Taylor
expansion of the Lennard-Jones potential with parameters
for Xe–Xe around its minimum [26], K = 1.103 J m−2.
Consequently, the typical scale of the velocity is as/τ0 = 6.5×
102 m s−1. In a similar way U0 is estimated to be in the range

1–5 × 10−21 J [26, 29], which gives 0.01 < λ < 0.05 < λc
close to the value of λ that we used in the simulations.

The velocity where the effective friction becomes a
strongly nonlinear function of velocity is rather high, orders
of magnitude too high for AFM and at the limit of reachable
velocities for QCM. Therefore it is important to realize
that in the low velocity limit, friction grows smoothly with
velocity from the vanishing static friction, contrary to the
Shinjo–Hirano model of figure 1. It would be interesting
however to explore also the transition from low viscous
friction to high friction in correspondence with the resonances
described before. The friction characteristics for the third
resonance could possibly be seen at sliding velocities of
approximately 30 m s−1, for temperature in the region of
about 8 K for Xe sliding on Ag(111). The second resonance, at
around 70 m s−1, would be visible up to higher temperatures,
at least around 50 K.

Another interesting experimental setting for the FK-
model is in colloidal suspensions, where atomic-scale systems
can be reproduced on larger scales, with colloidal particles
playing the role of atoms. Recently, the static FK-model
was studied experimentally in such systems [30]. However,
as colloidal crystals have overdamped decay of phonon
modes [31], the present results cannot easily be scaled up in
the same way.

6. Summary

We have numerically calculated effective friction coefficients
as a function of temperature and velocity in the FK-model
without any driving forces or phenomenological damping
terms. We have critically reviewed previous findings and
shown how the initial kinetic energy of the centre of mass
is converted into heat by excitation of the internal motion
of the chain, bringing the system to thermal equilibrium.
We then studied the temperature and velocity dependence
of the friction and found that it can be described as an
effective viscous damping. The friction coefficient however,
shows a peculiar velocity dependence with peaks at sliding
velocities close to resonances between the phonons of the
chain and wavevectors related to the modulation induced
by the incommensurate periodic potential. We argue that
these peaks in the friction coefficient could be observed
experimentally. Moreover, we find that for incommensurate
contacts, the effective damping increases with temperature.

Despite the fact that both sliding velocity and temperature
can suppress superlubricity in incommensurate systems, the
fact that the friction coefficient remains finite at low velocities
means that superlubricity is preserved in the important limit
of very low velocity probed by AFM experiments.
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