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Lyapunov spectra of billiards with cylindrical scatterers: Comparison with many-particle systems
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The dynamics of a system consisting of many spherical hard particles can be described as a single point
particle moving in a high-dimensional space with fixed hypercylindrical scatterers with specific orientations
and positions. In this paper, the similarities in the Lyapunov exponents are investigated between systems of
many particles and high-dimensional billiards. The billiards contain cylindrical scatterers which have isotro-
pically distributed orientations and homogeneously distributed positions. The dynamics of the isotropic bil-
liards are calculated using a Monte Carlo simulation, and a reorthogonalization process is used to find the
Lyapunov exponents. The results are compared to numerical results for systems of many hard particles as well
as the analytical results for the high-dimensional Lorentz gas. The smallest three-quarters of the positive
exponents behave more like the exponents of hard-disk systems than the exponents of the Lorentz gas. This
similarity shows that the hard-disk systems may be approximated by a spatially homogeneous and isotropic
system of scatterers for a calculation of the smaller Lyapunov exponents, apart from the exponent associated
with localization. The method of the partial stretching factor is used to calculate these exponents analytically,

with results that compare well with simulation results of hard disks and hard spheres.

DOI: 10.1103/PhysRevE.72.026216
I. INTRODUCTION

Chaotic properties of systems with many degrees of free-
dom, such as moving hard spheres or disks, have been stud-
ied frequently. Extensive simulation work has been carried
out on their Lyapunov spectrum [1-3], and for low densities
analytical calculations have been performed for the largest
Lyapunov exponent [4-7], the Kolmogorov-Sinai entropy
[8-10], and for the smallest positive Lyapunov exponents
[11,12]. Many studies have also been done on the chaotic
properties of billiards, systems consisting of a point particle
moving amongst fixed scatterers, notably the Lorentz gas
[13-16].

In this paper, the effects of the shape and orientation of
the scatterers in billiards are investigated by numerical simu-
lation and by analytical calculation. A comparison is drawn
between systems of many freely moving hard disks or
spheres and high-dimensional billiards with randomly ori-
ented cylindrical scatterers. The hard-sphere system can be
described as a single point particle moving in a high-
dimensional space with fixed (hyper) cylindrical scatterers
with specific positions and orientations. The prefix “hyper” is
used to denote objects with more than three spatial dimen-
sions. From the viewpoint of dynamical systems theory the
Lorentz gas, where the scatterers are (hyper) spheres, is very
similar to hard-sphere systems, as was noted already many
years ago by Sinai [17]. In a previous paper, we calculated
the full spectrum of Lyapunov exponents of the high-
dimensional dilute random Lorentz gas [13]. This spectrum
shows similarities to the spectrum of many hard particles,
but there also are differences. Some of these are due to the
shape of the scatterers. Others result from their positions or
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their relative orientations. In this paper, these effects are fur-
ther investigated by considering cylindrical scatterers. The
author is not aware of any other relevant work on such bil-
liards.

Section II serves as an introduction to Lyapunov expo-
nents. In Sec. III, the relevant dynamics of hard spheres are
explained, and the correspondence to the hard-sphere system
with cylindrical scatterers is discussed in detail. In Sec. IV,
simulations are presented for systems consisting of homoge-
neously distributed, (hyper) cylindrical scatterers with isotro-
pically distributed orientations. These systems turn out to
have spectra which closely resemble the spectra of hard disk
systems. Section V contains a calculation of the smaller
Lyapunov exponents of hard-disk systems. It relies on the
recently introduced concept of partial stretching factors [13]
in combination with a carefully chosen isotropic approxima-
tion. Finally, in Sec. VI, the results of both calculations are
discussed further and a comparison is made.

II. LYAPUNOV EXPONENTS

Consider a system with a phase space I'. In a
d-dimensional system with N particles, the phase space con-
sists of the positions and momenta of all particles and has
2dN dimensions. The system evolves from the initial state 7,
at time 1=0, according to the path y(y,,?). If the initial con-
ditions are perturbed infinitesimally, by &%y,, the system
evolves along an infinitesimally different path y(7y,?)
+6Y(yy,1), specified by

Y(y.1) =M, (1) - o, (1)
in which the matrix Myo(t) is defined by
dy(yo.1)

dyo

The Lyapunov exponents are the possible average rates of
growth of such perturbations, i.e.,

M, (1) = (2)
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where w,(r) is the ith eigenvalue of Myo(t)' The space of all
perturbations of a point in phase space is referred to as the
tangent space, denoted by dI'. If the system is ergodic, the
Lyapunov exponents are the same for almost all initial con-
ditions. The exponents are ordered according to size, with \;
being the largest and \,;y the smallest, as is the convention.

For Hamiltonian systems, such as hard spheres with only
hard-core interaction, the dynamics are invariant under time
reversal. For such a system, the attractor is invariant under
time reversal, and so is the spectrum of Lyapunov exponents.
Each tangent-space eigenvector which grows exponentially
in forward time decreases exponentially under time reversal.
It is mapped onto an eigenvector with a corresponding
Lyapunov exponent of equal size, but opposite sign. This is
known as the conjugate pairing rule. In systems such as the
ones described in this paper, therefore, one only needs to
calculate, numerically or analytically, the positive Lyapunov
exponents. In systems which are reversible, but for which the
attractor is not invariant under time reversal, the conditions
for and the form of the conjugate pairing rule are somewhat
different [4].

III. DYNAMICS OF HARD SPHERES
A. In phase space and tangent space

Vectors in tangent space which do not grow or shrink
exponentially are generated by the symmetry operations as-
sociated with the symmetries of the dynamics of the system.
They are eigenvectors with zero Lyapunov exponents and are
referred to as the zero modes. For a system of hard spheres
under periodic boundary conditions, these symmetry opera-
tions are uniform translations, Galilei transformations, time
translations, and velocity scaling.

In order to calculate the remaining Lyapunov exponents,
one must first derive the dynamics of the system in tangent
space from the dynamics in phase space. Below, the position
and velocity of a specific particle, indexed by i, will be de-
noted by r; and v,.

The evolution in phase space consists of an alternating
sequence of free flights and collisions. During free flights the
particles do not interact and the positions grow linearly with
the velocities. At a collision, momentum is exchanged be-
tween the colliding particles along the collision normal,
G=(r;~r;)/a, as shown in Fig. 1. The other particles do not
interact.

From these dynamics, the tangent-space dynamics can be
derived. During free flight there is no interaction between the
particles and the components of the tangent-space vector
transform according to

(&{):(1 (t—to)1>.(5ri)’ @
ov; 0 1 ov;

in which 1 is the d X d identity matrix and the primes indi-
cate the vectors after the free flight.

At a collision between particles i and j, only the tangent-
space vectors of the colliding particles are changed [5]. As
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FIG. 1. Geometry of a collision of two particles of diameter a in
relative coordinates. The collision normal ¢ is the unit vector point-
ing from the center of one particle to the center of the other. The
circle delineates the collision surface, the distance of closest
approach.

shown in Fig. 1, an infinitesimal difference in the positions
of the particles leads to an infinitesimal change in the colli-
sion normal and collision time. The v+ v are exchanged
along g+ 6. This leads to infinitesimal changes in both the
positions and velocities right after the collision. For conve-
nience we change over to the relative and center-of-mass
coordinates, dr;;=dr;—dr;, OR;=(dr;+0r)/2, v;=v;=v,
Vi=(vi+v))/2, 6v;j=6v,—6v;, and OV;;=(6v,+6v;)/2. The
tangent-space coordinates are found to transform as

orj;=dr;—2S - o, (5)
oR};= 0R;;, (6)

oV, = ov;—2S - 6v;-2Q- oy, (7)
8Vi;= 46V, (8)

in which S and Q are d X d tangent-space collision matrices
and primes are used to denote the coordinates after the col-
lision. The matrix S may be written as

S=40, )

where the notation ab denotes the standard tensor product of
vectors a and b. Define 6 as the angle between v;; and &. The
unit vector orthogonal to v;; in the plane spanned by v;; and
& then reads

(-0
p= : (10)
|sin 6

The matrix Q may be written as

Q- ﬂl<cos 0(1-3,9;— pp) + Lﬁ’ﬁ). (11)

a cos 6
Note that Q transforms the vectors dr;; which are orthogonal
to v;; into vectors that are orthogonal to Vl'] The vector V;; is
a right-zero eigenvector of Q, and fri’j a left-zero eigenvector.
Note that these are d-dimensional vectors, not

2d-dimensional.
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B. Scatterer configurations

In the relative coordinates of the two particles, the colli-
sion surface is spherical. As is shown in Fig. 1, the relative
coordinates transform as the coordinates of a point-particle
colliding with a sphere of the same dimension. The center-
of-mass coordinates do not transform.

The dynamics of two colliding hard disks (spheres) are
equivalent to the dynamics of a point particle colliding with
a fixed (hyper) cylindrical scatterer. A system of many hard
particles thus is equivalent to a system consisting of a point
particle bouncing between many cylindrical scatterers. Each
of the scatterers corresponds to the collision surface of two
particles.

The orientations of the cylinders can be readily found. If
two cylinders belong to collisions of pairs of different par-
ticles, the finite directions of the two cylinders are orthogo-
nal. Two specific cylinders may be collision surfaces belong-
ing to two pairs of hard spheres which involve a common
particle i. In this case, the spherical components of the two
cylinders are not orthogonal. Let the two other particles in-
volved in the two collision surfaces be particles j and /. The
d-dimensional plane with which the intersection of the colli-
sion surface of particles 7 and j is a sphere then consists, if
l#1,j, of the sets

Sl.jz{r|r[-=—rj;rl=0}. (12)

For any d, the highest possible value for an inner product of
unit vectors in S;; and §j; is % Therefore the angle between
the two sets is 7/3.

The coordinates of the center of mass constitute d out of
the dN dimensions of the original system. If the boundary
conditions are periodic or if the system is infinite, there is
only uniform motion in these directions. As a consequence,
perturbations in these coordinates (uniform translations of
the entire system) remain constant.

Perturbations of the velocity that correspond to Galilei
transformations lead to a linear growth in the perturbations in
the positions. This yields 2d linearly independent perturba-
tions which do not grow exponentially, and therefore 2d zero
Lyapunov exponents, associated with the position and mo-
mentum of the center of mass. There are two more zero
Lyapunov exponents, corresponding to a translation in time
and a rescaling of the velocity in dN dimensions.

If the system has periodic boundary conditions, there are
extra cylinders, corresponding to collisions after at least one
of the particles has moved through the boundaries of the
periodic volume. After eliminating the center-of-mass coor-
dinates by setting the center-of-mass position and momen-
tum to zero, one can describe the system as a point particle
with coordinate r in a d(N—1)-dimensional space with peri-
odic boundary conditions moving among N(N-1)/2 fixed
(hyper) cylindrical scatterers with d spherical dimensions. As
energy is conserved, the particle still moves at velocity v,
which is related to the inverse temperature 8=1/(kgT) and
the particle mass m by

_|(N=1)d
v= —Bm . (13)
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FIG. 2. The two-dimensional representation of a system consist-
ing of three particles in one dimension. A possible trajectory is
shown. If the system is infinite, the particles will soon leave each
other’s vicinity and never collide again. The axes of the cylinders
intersect in one point. If the system is subject to periodic boundary
conditions with periodicity L, they will encounter each other again.
The cylinders belonging to such collisions and a path are indicated
with dotted lines.

Consider, for example, the simplest nontrivial case of
three particles in one dimension. The space has two dimen-
sions and the fixed (hyper) cylinders have one spherical and
one infinite dimension. The two-dimensional representation
is displayed in Fig. 2.

The cylinders corresponding to the hard-sphere system
are oriented in specific directions. To simplify calculations, it
is possible to consider a homogeneous distribution of scat-
terers with a distribution of orientations which is isotropic.
With such a distribution and the approximate distribution of
the radius of curvature tensor derived in Ref. [8], it may
become possible to use the techniques developed in Ref. [13]
to calculate the Lyapunov spectrum.

IV. SIMULATIONS OF THE SPECTRUM OF
ISOTROPICALLY DISTRIBUTED CYLINDERS

To investigate the effects of the shape of the scatterers and
the distribution of orientations, simulations have been carried
out for a high-dimensional system with homogeneously dis-
tributed cylinders with an isotropic distribution of orienta-
tions. Cylinders are considered with two spherical directions.
This system can be compared to hard disks with the same
collision frequency as well as to the Lorentz gas.

A. Simulation method

The dynamics in phase space have been calculated by
means of a Monte Carlo method. Collision parameters were
drawn from the relevant distributions to generate a path in
phase space. Each step consists of a short free flight of the
point particle, followed by a collision with a cylindrical scat-
ter. The free-flight times are drawn from an exponential dis-
tribution of times 7,

p(7) = Dy exp(= vy7), (14)

where vy is the average collision frequency of the point par-
ticle with the scatterers. We have
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vy = EEN, (15)

with ¥ the average collision frequency of a single particle, at
low densities given by

2 ,n.(d— 1 )/2nad—1

T(d2)\pm (1

V=

The collision frequency of a specific particle depends on its
velocity. The collision normal is drawn from an isotropic
distribution in the d(N-1)-dimensional space such that
a-v<0. It is accepted with a probability equal to the size of
the component along the velocity of the point particle, -5V,
which is proportional to the collision rate in two dimensions.
The orientation of the scatterer is specified by the two vec-
tors in its spherical directions, the collision normal and one
other vector, which is drawn from the isotropic distribution
as well. This leads to an isotropic distribution of the orienta-
tions of the scatterers. For more details on Monte Carlo
simulations, see Ref. [18].

At each collision, the dynamics of the point particle are
calculated, as well as the transformations of a numbered set
of tangent-space vectors. After every step, the tangent-space
vectors are reorthonormalized. That is to say, the components
of each of the vectors along vectors with higher indices are
subtracted and then the vectors are normalized. The scaling
factors are equal to the growth of each vector between the
last two collisions. For long times, the growth of the ith
vector is dominated by the ith Lyapunov exponent. The scal-
ing factors are stored and, for each vector, their logarithms
are summed. The ith sum divided by the total elapsed time
converges, for long times, to the ith Lyapunov exponent. For
more details on this method for calculating the Lyapunov
exponents, see Ref. [19].

B. Discussion of the spectrum

One may compare the spectra of a point particle colliding
with homogeneously and isotropically distributed cylinders
to the spectra of systems of hard disks with the same colli-
sion frequency, energy, and dimensionality (d=2), as well as
to the spectrum of the high-dimensional Lorentz gas. Plots of
the spectra of the isotropically distributed cylinders at vari-
ous dimensionalities and densities are shown in Fig. 3. The
spectra for the corresponding hard-disk systems with peri-
odic boundary conditions are shown in Fig. 4.

The Lyapunov spectrum of the high-dimensional Lorentz
gas, calculated in Ref. [13], is much flatter than that of the
hard-disk system. It becomes flatter with increasing number
of dimensions. This difference in behavior is due to the fact
that, for the Lorentz gas, all coordinates not associated with
zero modes are involved in every collision and grow with a
factor of the order of the free-flight time between two colli-
sions. For hard disks only the four (2d) phase-space coordi-
nates of the two colliding particles are involved in a colli-
sion. From Figs. 3 and 4 one can see that the spectrum of a
point particle colliding among isotropically distributed cylin-
ders is much more similar to the hard-disk spectrum. For
large N, its shape becomes independent of N.
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FIG. 3. The spectra of positive Lyapunov exponents for systems
of isotropically distributed (hyper) cylinders with the same collision
frequency, energy, and dimensionality (d=2) as hard-disk systems
with densities 0.1a72, 0.01a72, 0.001a72, and 0.0001a72, and vari-
ous particle numbers N. The inverse temperature S=1.

For the largest exponent it is known that the correspond-
ing perturbation is carried by only a few particles [4]. The
Lyapunov exponents are strongly affected by this because
collisions of particles other than these few do not contribute
to the growth of the tangent-space vectors. There is a small
probability of large growth, as opposed to a large probability
of small growth in the fully isotropic system. In the lower
end of the spectrum, the tangent-space vectors for hard disks
are carried by many particles [20]. In this regime the expo-
nents behave similarly. From Figs. 3 and 4 it can be seen that
they depend differently on both the density and the particle
number.

The tangent-space eigenvectors corresponding to the
smaller Lyapunov exponents of hard-disk systems are carried
by many particles, and for these the similarities to the cylin-
der system are much greater. The lower Lyapunov exponents
behave similarly to the exponents of the hard-disk system
(apart from the Goldstone modes) and are proportional to .
For the d=2 cylinder systems, I find that the smallest posi-
tive Lyapunov exponent behaves as

7\2(}\]_1)_2:0.371_/. (17)

For large particle numbers and low densities, the smallest
exponents of hard disks and spheres, apart from the Gold-
stone modes, are equal to [21]
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FIG. 4. The spectra of positive Lyapunov exponents for systems
of many freely moving hard disks, with the same collision fre-
quency, energy, and dimensionality (d=2) as the systems for which
the Lyapunov spectra are displayed in Fig. 3.

\ 031y ifd=2 18
AND2T10.395 if d=3. (18)
There is a difference of less than 20% between the smallest
exponents of the cylinders and the hard disks, independent of
density or particle number, provided the particle number is
sufficiently large and no Goldstone modes exist in the hard-
disk system.

The Goldstone modes in the hard-disk system (see, for
example, Refs. [3,13,22-24]) are due to localization. In the
corresponding high-dimensional system of cylindrical scat-
terers, they are related to the specific positions and orienta-
tions of the scatterers. As the cylinders in the simulation
presented here cannot be associated with two specific par-
ticles, Goldstone modes are absent.

V. ISOTROPIC-CYLINDER APPROXIMATIONS FOR THE
HARD-DISK SYSTEM

The simulation described in the previous section produces
a Lyapunov spectrum which is suggestively similar to the
spectrum of hard disks. As the system is homogeneous and
isotropic, the techniques developed in Ref. [13] can be ap-
plied to calculate the Lyapunov exponents of the isotropic
cylinder system. Rather than working this out, one may re-
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turn to the hard-disk system and apply some approximation
inspired by the similarities between the two systems to the
calculation of the Lyapunov exponents of hard disks. In the
lower end of the spectrum, the tangent-space vectors for hard
disks are carried by many particles [20], and in this regime it
is possible to use the isotropic approximation to calculate
Lyapunov exponents.

In this section, a calculation of the smallest exponents not
due to localization effects is described which makes use of
the stretching factor derived in Ref. [8], but which assumes
an isotropic distribution of scatterers. This approach will lead
to behavior of the largest exponents that is different from the
real hard-disk system. However, for the smaller Lyapunov
exponents the approximation will be better. The Goldstone
modes, which were discussed in, for example, Refs.
[3,12,22-24], are also removed by the homogeneous distri-
bution of scatterers, as their existence relies on the fact that
in the hard-disk system only nearby particles collide.

A. Partial stretching factors

This section briefly discusses the method of the partial
stretching factor [13] to calculate the full Lyapunov spectrum
of an isotropic system. In standard terminology, the stretch-
ing factor is defined as the factor by which the expanding
part of tangent space expands over a time 7. It can be used to
calculate the Ruelle pressure as well as the sum of the posi-
tive Lyapunov exponents, equaling the Kolmogorov-Sinai
entropy in systems without escape [15,16].

By analogy, the partial stretching factor Ag(r,v,t) of a
p-dimensional subspace S of the 2dN-dimensional tangent
phase space is defined as the factor by which the volume of
an infinitesimal p-dimensional hypercube in this subspace
has increased after a time ¢. Unless S is orthogonal to one of
the p most unstable directions in tangent phase space, the
partial stretching factor will, for very long times, be domi-
nated by the p largest Lyapunov exponents. Explicitly, one
has the identity

P

1
>\ =lim I Ag(rv,0). (19)
i=1

t—®

The partial stretching factor just after collision N is the prod-
uct of the partial stretching factors due to collisions 1
through N. These depend on the relative orientations of v, &,
and the image of S.

For systems with only hard-core interaction, where the
collision times are exactly defined, the partial stretching fac-
tor can be written as the product of partial stretching factors
resulting from each of the different single collisions com-
bined with the subsequent (or previous) free flights of the
two particles involved. In this description, the effects of the
free flights of the other particles have already been accounted
for at their most recent collisions. On the right-hand side of
Eq. (19), the logarithm may be replaced by the sum of loga-
rithms of these stretching factors. The resulting expression
may be interpreted as a time average, which in ergodic sys-
tems may be replaced by an ensemble average. If the system
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is isotropic, the collisions are uncorrelated, so that one has
p
2 N=—(InAY), (20)

which is independent of the chosen initial subspace. Here,
AP s the single-collision partial stretching factor due to
collision j of a p-dimensional subspace of tangent phase
space. This is assumed to include the free flights of the par-
ticles after the collision, and not those before. To obtain the
Kolmogorov-Sinai entropy and the Lyapunov exponents, one
must calculate the distribution of single-collision partial
stretching factors. For more details on the derivation of Eq.
(20) and the consequences of isotropy, see Refs. [13,25].

The growth of a dN-dimensional volume element in &I’
can be monitored through its projection onto a subspace of
oI" with at least the same number of dimensions, as long as
this projection space is not orthogonal to one of the dN lead-
ing eigenvectors of M. In the limit 7 — oo, the logarithm of the
determinant of the transformation of the projection yields the
same Kolmogorov-Sinai entropy as the logarithm of the
stretching factor of the actual volume element.

If (8r'™, 5v\™) are the eigenvectors belonging to the posi-
tive exponents, the eigenvectors which belong to their coun-
terparts under conjugate pairing are equal to (5, —8v™).
Therefore eigenvectors which have no contributions along
either or or v correspond to themselves under conjugate
pairing. Such eigenvectors must therefore have zero
Lyapunov exponents. The spaces spanned by either or or dv
are not orthogonal to any eigenvectors which belong to non-
zero Lyapunov exponents. In the system described here, a
convenient choice for the projection space may therefore be
either of these spaces. Often, v is used because it does not
change during free flights. However, in the calculation pre-
sented here it is necessary to use Jr instead, as I will show in
Sec. V C.

B. The inverse radius of curvature

This section briefly summarizes the relevant results and
intermediate results of Ref. [8], from which more details can
be obtained. In order to calculate the transformation of the
projection of a tangent space vector onto a subspace of the
tangent space, one needs information about the original, un-
projected vector. The single-particle partial stretching factor
depends on dor as well as 6v before the collision. As dN
dimensions will be projected out, r may be assumed to have

W 0
0 L
EWIIH
W,=4[0 0
0 L
- EWld—l
\w15,d
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a probability distribution which depends on év. The radius of
curvature is defined as the tensor which transforms Jr into
ov. The inverse of the radius of curvature connects the two
perturbations,

or=7W- dv, (21)

with 7=1/v the average free-flight time. The matrix WV can
be split up into dXd matrices between specific particles,
W,;. If the two indices are equal, W; may be used as short-
hand. As particles collide and have free flights, W;; changes.
The volume element projected onto or or 6v before the col-
lision is mapped to a projection of a volume element after the
collision. This map depends on the elements of W.

Maps of W can be found from the dynamics. The distri-
bution of elements of ¥V may not change by a collision.
Together with the distribution of collision parameters this
yields a complicated nonlinear integral equation for the joint
distribution function of the elements of W. With p(W) the
distribution of W before the collision and p’(W) the distri-
bution after the collision, one may write

PV = J dWp(W)SW' (W) = W). (22)

In Ref. [8], the equation is solved by an iterative method,
starting from a fairly simple distribution and iterating the
equation. Each extra step in the iteration results in a distri-
bution function which more closely resembles the true solu-
tion. In order to improve the convergence, I introduce a pa-
rameter, the average trace element, in such a way that the
average trace can be kept fixed over an iteration. In the first
iteration, just before a collision, the W; are equal to their
averages, and, due to the Stofzahlansatz, all W;; are equal to
zero. If the distribution of the angle between the relative
velocities of two consecutive collisions is (nearly) isotropic,
the two average diagonal elements are (approximately)
equal. In this case, the matrix is

Wi j = Wl 5

> (23)
where §;; is the Kronecker delta. The initial distribution used
in the iteration process is a product of Dirac delta functions
at the average value w for the diagonal elements and zero for
the off-diagonal elements.

From the dynamics, formulated in Egs. (4)—(8), one finds
W after the collision (W) and after the collision and the free
flight (JV'). In the basis consisting of ¥;; and the d—1 vectors
orthogonal to it, the values of W, are changed according to

ifk=l=ivk=I=j

(24)

if (k,0) =(i,j) v (k1) = (j,i)

ifk#ijvI+ij,
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r
(\4_/+1_/’Tk) 0
1
0 <5W+ ]_}Tk>1d—l
111=< 0 0
0 ——-wl,
2W d-1
| 716,

where 1,_, denotes the (d—1)-dimensional identity matrix.
Equations (24) and (25) imply a distribution for the elements
of W/ ; expressed in the basis belonging to the next collision,
which consists of Q;j and the d—1 vectors orthogonal to it,

AL
Vil

After two iterations of Eq. (22), it is found that the aver-
age trace element is approximately equal to

2929 ifd=2
W= . (26)
1.947 ifd=3.

Together with Eq. (25) and the distribution of the basis-
transformation matrix, which may be conveniently drawn
from a molecular dynamics simulation of hard disks or
spheres, this gives an approximate joint distribution function
for the elements of W,.

C. Projection

For the Lorentz gas the isotropic distribution of scatterers
makes it possible to simplify the calculation [13]. Because of
the isotropy, the probability distribution of the stretching fac-
tor is independent of which p-dimensional subspace S is be-
ing stretched. Also, the low-density approximation is not af-
fected by the problems described in the previous section and
in Ref. [8].

For systems composed of isotropically distributed cylin-
drical scatterers or hard disks, however, the choice of the
space onto which everything is projected affects the distribu-
tion of the partial stretching factors. Diagonal elements of W
grow linearly during free flights. In the calculations in hard-
disk systems in Ref. [8], the elements of W are, in fact,
calculated as weighted summations over sequences of free
flights. Notice that in the case of truly isotropically distrib-
uted cylinders the summations are somewhat different, and
that the partial stretching factors are therefore different from
those in the equivalent hard-disk system.

The free flights of several collisions contribute to an ele-
ment of W, as with each free flight or grows linearly with
&v. This can be seen, for example, in Eq. (25). Suppose one
such term contains a long free-flight time. In the spatial
tangent-space direction belonging to this particle, the stretch-
ing is large, and this affects the orientation of the stretching
manifold. If the growth is monitored through a projection
onto ov, the stretching due to several free flights affects the
partial stretching factor at one collision. At another collision
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ifk=l=ivk=I=j

(25)
if (k,0) = (i,)) v (k1) = (j,i)

ifhk#ijvI+i],

of one of the two particles, the same long free flight will
again affect the partial stretching factor. This introduces a
correlation between the orientation of the projection of §
onto 6v and the amount of stretching. The distribution of
partial stretching factors then depends on the orientation of
the stretched space S, even in the case of fully isotropically
distributed cylinders. In such cases, Eq. (20) cannot be used.

If an approximation not exhibiting this problem is to be
made for the hard-disk system, the standard choice of pro-
jection on dv is inadequate. Instead, as is done in the present
paper, the dynamics must be projected onto dr. In this rep-
resentation, the correlations through the sums of collision
times are removed because the linear growth is incorporated
in the partial stretching factor immediately. However, the
isotropic distribution of orientations still is an approxima-
tion, as there is correlation between free-flight times and
other collision parameters from different collisions through
the particle velocity.

D. The partial stretching factors for hard spheres
at low densities

The stretching of the projection onto or of a
p-dimensional subspace of the tangent space due to a colli-
sion between particles i and j depends on this projection and
on W at the collision. There are 2d coordinates involved in
the collision projected onto or, d for each particle. The
tangent-space dynamics are described in Sec. III. In the rela-
tive coordinates, the collision transforms the tangent-space
vectors as in an elastic collision with a d-dimensional, fixed,
spherical scatterer. Q works on d—1 directions of the relative
coordinates orthogonal to V;;. The action of Q on the relative
coordinates is described by Egs. (7) and (11).

In the direction of dr;; parallel to p, the partial stretching
factor of the projection onto Jr after a collision and subse-
quent free flights is, to leading order in the density,
2vT,/(acos 6). Here, 7, is the same as in Ref. [8], that is,
7,=(7+7;)/2. In d-2 directions orthogonal to p and V,;, the
partial stretching factor is 2v, cos 6/a. There are d+1 co-
ordinates involved in the collision on which @ does not
work, the center-of-mass coordinates and the relative coordi-
nates parallel to V;;. In these directions, the linear stretching
due to the free flights must be calculated and incorporated
into the partial stretching factor. Meanwhile, for all other
particles, or grows linearly as well. This can be accounted
for later, at their next collision, without loss of generality.
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The distribution of the stretching is difficult to obtain if
the distribution of the elements of W is complicated. In a
simple calculation, the expressions for W' and W' in the
approximation of Sec. V B can be used [see Egs. (23) and

(25)]. In this case, W is approximated by WW=Zw. With this
simple form of W' and W', the partial stretching factors in
the remaining d+ 1 directions can be calculated.

For the d—1 directions of the center-of-mass coordinates
orthogonal to V;;, the eigenvalues of W' are w+ v7,, yielding
a partial stretching factor of (w+v7,)/w. Similarly, for the

2uT,

alat

1- vijvij) . 51'1",' =

In the center-of-mass coordinates orthogonal to ‘A/i']»,

Al AT ! 177-+ Al A
(I‘WWW'5RU=(1+75>(1‘WWQ‘5Ru

Wri—7) o e
+T(1—VUVU) . 51‘,»j. (29)

The eigenvalues of the transformation, the growth factors,
are denoted by g;, with / between 1 and 2d. They can be
found from Egs. (27)—(29). In summary, the following
growth factors occur:

{
2
acos 0
2 0
LT f1<i=d-1
a
_—_
g={ 1+t ifl=d (30)
T, .
1+— ifd<I=2d-1
w
1+ ifr=2d.
\ w

From these growth factors, the partial stretching factor can
be calculated for any subspace S of tangent space.

E. Lower bound of the Kolmogorov-Sinai entropy

In principle, the choice of projection does not affect the
Kolmogorov-Sinai entropy, since its calculation does not in-
volve partial stretching factors, only the stretching factor.
There is, therefore, no need for an isotropic approximation.
From Egs. (26) and (30) the stretching factor can be calcu-
lated. From Eq. (20) the Kolmogorov-Sinai entropy is found
to satisfy

[cos O(1 =V, %;—p'p)+
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remaining two directions, those parallel to V; j» one finds (w
+v7;)/w and (W+v7;)/w. In the directions belonging to par-
ticles not involved in the collision, nothing changes. In the
coordinates parallel to f/ij,

Al ’ TJTA N
Vij . 5I‘l- = (1 + _ )Vij N 51'1'. (27)
w

In the relative coordinates, Q acts on vectors orthogonal to
At

Vi

1 v(1— 1)
AL A i j Al
cos ep p:| . 5rij + ZW (1 - Vijvl'j) . 5Rl] (28)

hgs = B

2d
Ny 1n[Hg,] ) (31)
I=1
The approximation of W' by 1/W affects the Kolmogorov-
Sinai entropy. After numerical integration, using the estimate
for w in Eq. (26), this yields for the constant B in the expan-
sion hgs=ANY-In(na’)+B+---] the approximate values

098 ifd=2
BY) ~ (32)
013 ifd=3.

The estimation obtained here is less accurate than the results
of Ref. [8] and the numerical values found in simulations
[21]. The latter are 1.366 and 0.29. This is related to the fact
that the distribution of the stretching factor after only one
iteration of the equation for the distribution function is used.
Note that a wider spread of the elements of W, or a lower
value of w, which would result from more iterations, leads to
a larger value for B.

F. The smallest exponents

Despite the approximate nature of the calculation of the
partial stretching factors in this section, it is possible to use
the results for an estimation of the smallest Lyapunov expo-
nents.

Any [d(N-1)-2]-dimensional subspace S,u_;)- of the
[d(N-1)—1]-dimensional subspace Syy-_1)-; of [dr;] or-
thogonal to the zero modes can be characterized by a single
vector, . This is the vector orthogonal to S,_;)-, and the
zero modes. The approximation made in this section is that
this vector, which is the eigenvector belonging to the small-
est positive exponent, has significant components along the
directions or; and &v; of many particles [20], and is more or
less isotropically distributed in phase space. Also, these com-
ponents do not depend much on the velocities of the par-
ticles. This permits the isotropic approximation.

The smallest exponent can be calculated from Eq. (19),
the partial stretching factor of S,y_)—, at a collision, and the
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stretching factor [13]. Following the derivation in Ref. [13]
for the hard-disk system, one obtains

Nv -
NaN-1)-2 = 7(111 A= In AD2) (33)

where i is the index of the collision, A; is the stretching
factor due to collision i, and AEd(N_l)_z] is the partial stretch-
ing factor of S;_;)-, due to collision i.

The difference of the two logarithms in Eq. (33) can be
expressed in terms of the components of g along the growing
directions, denoted by sin ¢;, with [ the index of the growth
factor. If sin ¢, is small for all I, (sin> ¢)=1/(dN). One finds

2d
ND 1
Nav-1)-2 = S\~ ln(H \/cos2 ¢+ — sin’ d),)

=1 81

(34)

If ¢ has significant components along many particles, then
sin ¢; is small, and the logarithm can be expanded about
unity argument to yield

2d
Nv 1) .
Nan-1)-2 = 7 % (1 - z)smz hr /. (35)
- i

If ¢, is isotropically distributed in d(N—1)—2 dimensions
and N is large, the average of sin® ¢, can be approximated by
1/(dN)+O(1/N?). One then finds that

2
v 1
Nav-1)-2 = _4d§ (1 - <;>> (36)
= i

The d-1 directions in which the growth factor is of order
1/(na?) contribute an amount 7/(4d) to the smallest expo-
nents. The growth factors due to the free flights, of order 2,
contribute smaller amounts. If the growth factors had been
calculated from the projection on v, the isotropic approxi-
mation would have been far less effective, and only the
growth in d—1 directions would have been found. The other
terms in the smallest exponents would have been absent. The
same dependence on ¥ would have been found, but the pref-
actors would have been smaller.

Combining Eq. (36) with Egs. (26) and (30), after numeri-
cal integration over the growth factors to calculate the aver-
ages, yields estimates for the leading order of the smallest
exponent, at low densities,

. Jo26v ifd=2 )
dN-D-2""1 0325 if d=3.

These results are similar to the lowest exponent found from
simulations of hard disks and hard spheres, which are also
proportional to # [Eq. (18)]. The prefactors obtained from the
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estimation based on the iterative approach and isotropic ap-
proximations differ from the simulation results by less than
20%.

VI. CONCLUSIONS

In this paper, the similarities between the chaotic proper-
ties of a point particle colliding elastically with isotropically
distributed cylinders and systems of freely moving hard
disks were investigated. First, Monte Carlo simulations of
the spectrum of the isotropic billiard were presented. The
lower three-quarters of the positive Lyapunov exponents
were found to be similar to the exponents of hard disks as a
function of the density and particle number. The larger ex-
ponents behave differently, as was to be expected.

Further, an analytical estimate of the smallest Lyapunov
exponent of hard disks not due to localization was discussed.
In this calculation, the collective property of the eigenvector
belonging to the smallest exponent was used by approximat-
ing the distribution of scatterer orientations as isotropic. This
makes it possible to use the techniques developed in Ref.
[13] to calculate Lyapunov exponents through the partial
stretching factor. Based on the calculations presented in Ref.
[8], an approximation for the partial stretching factor was
made. The results of this calculation resemble results of the
simulation for hard disks. The smallest exponents depend on
the collision frequency v in the correct way and are indepen-
dent of the particle number N, for sufficiently large N. The
linear dependence on v of the smallest exponents is entirely
due to the shape of the scatterers. The prefactor deviates
from the simulation results by about 20%.

Both calculations discussed in this paper indicate that the
lower end of the spectrum of hard disks or spheres is pre-
dominantly determined by the shape of the scatterers, and
not so much by the scatterer orientations. With better ap-
proximations of the partial stretching factor, it should be fea-
sible to use the method developed in Ref. [13] with an iso-
tropic distribution of scatterer orientations to calculate a
large portion of the lower end of the Lyapunov spectrum of
hard disks and spheres. A large portion of the Lyapunov
spectrum of many-particle systems can be understood by us-
ing this isotropic approximation.
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